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Typical discontinuous methods includes the generalized 
finite element method (GFEM) [2], the extended finite ele-
ment method (XFEM) [3], and a special variant of VEM [4]. 
Although these methods are efficient and flexible, address-
ing complex crack patterns, such as initiation, branching, 
and merging, continues to be a significant challenge for 
discrete approaches. In contrast, continuous approachs (or 
smeared approachs) do not introduce any discontinuities, as 
they rely on material degradation modeled through damage 
mechanics. This approach is able to capture complex crack 
patterns in a variety of problems in solid mechanics. Typical 
continuous approachs include gradient damage models [5, 
6] and phase field models [7–9].

Phase field modelling of fracture was proposed by 
Francfort and Marigo [10] based on the Griffith’s ener-
getic theory of brittle fracture. By introducing an additional 
continuous phase field variable d ∈ (0, 1], the phase field 
model can be constructed based on a variational formula-
tion including fracture energy. Mathematical principles and 
applications of phase-field fracture can be found in [7, 11]. 
For recent work, Chen et al. [12] developed a high-accuracy 
phase field model that can accurately reproduce arbitrary 
cohesive laws. Furthermore, Feng and Hai [13] proposed 
a unified directional energy decomposition method to 

1 Introduction

Numerical simulation of fracture is of great importance for 
engineering applications and material science. In recent 
years, numerical simulation techniques for predicting 
fracture problems have mainly been categorized into two 
approaches: discontinuous and continuous methods [1]. 
In the discontinuous approach, the crack and its propaga-
tion are characterized at the geometric level, which results 
in discontinuities in the displacements over the crack face. 
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Abstract
This work presents a stabilization-free virtual element method (VEM) for phase field fracture. The distinctive feature of 
the virtual element method is its ability to utilize elements of general shape. However, the existence of additional stabi-
lization term in the traditional virtual element method has some drawbacks when solving complex phase field fracture 
models. Different from the conventional virtual element method, the approach employed in this work eliminates the 
need for additional stabilization terms, making it more suitable for the phase field modeling of fracture. In this work, the 
anisotropic phase field fracture model is considered. In order to improve the calculation efficiency, the non-matching mesh 
ability of VEM and adaptive technique are employed. Since the virtual element method is automatically applicable to 
elements with general shape, it is easy to handle an arbitrary number of nodes and thus also hanging nodes resulting from 
the non-matching meshes used to adapt the meshes. Several representative benchmarks show the accuracy and efficiency 
of the proposed method.
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incorporate cohesive laws into the phase field model in 
a 3-D setting Besides, Zhou et al. [14] developed a trust 
region-based algorithm that demonstrates 2-3 times higher 
efficiency than ABAQUS’s native algorithm, representing a 
major advance in computational mechanics.

In fact, all the above related works are calculated based 
on the finite element method. The finite element method is 
an effective tool for solving phase field modelling of frac-
ture [11, 15–17]. When using the finite element method to 
solve phase field fracture problems, it is necessary to use 
a very fine mesh to accurately capture the crack path. In 
addition, the non-convexity of the potential energy function 
results in a substantial increase in computational effort. To 
reduce the total degrees of freedom, a pre-refined mesh can 
be employed if the crack path is approximately known a 
priori. A straightforward strategy is to employ a refinement 
based on a non-matching mesh, enabling localized mesh 
refinement [18]. Besides, adaptive mesh technology can be 
used to automatically refine the mesh as the crack propa-
gates [19–21].

Generally, local refinement methods, such as non-match-
ing and adaptive meshing, require numerical methods capa-
ble of handling polygonal elements. Polygon elements with 
hanging nodes can be treated by polygonal finite element 
method [22] and ariable-node elements [21]. In addition to 
the most commonly used finite element method, the multi-
level hp-FEM and the finite cell method [15] also demon-
strate a flexible effect. Additionally, the scaled boundary 
finite element method (SBFEM) [23] and isogeometric 
analysis (IGA) [24] offer significant advantages for the 
application of phase field approaches to fracture.

The virtual element method (VEM) is a new method for 
arbitrary polygonal elements, which was proposed in [25] 
and applied to solid mechanics [26, 27]. The basic principle 
of VEM is to define a projection from the virtual element 
space to the polynomial space. This projection inevitably 
leads to rank deficiency in virtual elements, so additional 
stabilization terms are needed. So far, VEM was applied to 
solve fracture problems using phase field approaches, see 
[28–30]. Recent work based on VEM with adaptive mesh 
for large-strain phase-field fracture can be found in [31]. The 
flexibility of VEM allows to combine the discrete cutting 
method with an adaptive phase field model [32]. Beisdes, a 
high-order VEM has been developed for a fourth-order frac-
ture model [33]. However, for complex phase field models, 
such as anisotropic phase field fracture model with a spec-
tral decomposition [7], the stabilization term in VEM often 
lead to poor convergence or even no convergence (if we use 
the dofi-dofi stabilization).

In order to avoid the influence of the stabilization term, 
stabilization-free virtual element methods (SFVEM) [34–
36] have been constructed. The basic principle is to modify 

the conventional VEM function space to allow the compu-
tation of a higher-order L2 projection of the gradient. With 
the appropriate choice of order l [34, 37], the introduction of 
high-order polynomial space leads to virtual elements with 
correct rank and results in a more stable VEM, especially 
for nonlinear problems. For quadrilateral meshes, the simu-
lation results obtained by SFVEM are essentially equiva-
lent to the results obtained by FEM [35, 38]. However, it is 
inevitable that high-order polynomials used in SFVEM will 
lead to reduced computational efficiency compared to FEM. 
Still, SFVEM can be employed for arbitrary shaped ele-
ments and yields a consistant treatment of hanging nodes. 
In this work, the SFVEM is used for the complex phase 
field fracture model. To enhance computational efficiency, 
two techniques are employed. The first one involves a rough 
estimate of the crack path and uses non-matching elements 
for mesh refinement, ensuring that no new meshes have to 
be generated during the computation. The second technique 
is adaptive mesh refinement, in which the mesh is automati-
cally refined when the crack propagates. In order to further 
improve the computational efficiency, FEM can be used for 
the quadrilateral elements and SFVEM can be employed for 
elements with polygonal or other shape.

The paper is organized as follows. The continuum 
mechanics background and the variational format of phase 
field model of fracture are given in section 2. The stabiliza-
tion-free virtual element method for phase field fracture is 
given in section 3. The finite element method for phase field 
fracture is addressed in section 4. The adaptive refinement 
technique can be found in section 5. Numerical examples 
are provided in section 6. The paper will be summaried in 
section 7 with conclusion and discussion.

2 Theory of phase field models for fracture

2.1 Phase field representation of the crack

In the study of brittle fracture, the phase field method is 
widely employed to model and analyze fracture behavior. 
For a linear elastic body Ω ⊂ Rd with surface boundary 
Γ = ∂Ω and internal crack surface Γs, the crack face can be 
represented by the regularized crack surface function which 
is given by the phase field ϕ(x).

In a quasi-static loading regime, the total potential energy 
Ψ is the sum of the deformation energy and the crack sur-
face energy Ψc

Ψ(u, Γs) = Ψb + Ψc − Ψext, (1)

where
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Ψb :=
∫

Ω
ψe(ε(u), ϕ)dΩ,  (2)

Ψc :=
∫

Γc

GdΓ,  (3)

Ψext :=
∫

Ω
f · udΩ +

∫

Γn

tn · udΓ.  (4)

Ψb represents the elastic strain energy, ψe is the strain 
energy density functional expressed in terms of strain ten-
sor ε(u) = 1

2
(
∇u + ∇uT

)
 with the displacement field u. 

Besides, Ψc represents the material fracture energy and G 
is the critical energy release rate. In the expression of the 
external force potential energy Ψext, f  is the body force and 
tn is the prescribed boundary traction.

In order to avoid discontinuites in traditional fracture 
problems, the crack surface is regularized by the continu-
ous phase field variable ϕ(x) ∈ [0, 1]( as shown in Fig. 1b). 
Then, the crack surface energy Ψc can be approximated as a 
domain integral, see e.g. [7]
∫

Γc

GdΓ ≈
∫

Ω
GΓl0(ϕ)dΩ, (5)

with

Γl0(ϕ) = ϕ2

2l0
+ l0

2
|∇ϕ|2, (6)

where l0 is the characteristic length scale.

2.2 Energy decomposition

For an isotropic elastic body, the strain energy density can 
be defined as

ψe = 1
2

λ (trε)2 + µ tr
[
(ε)2]

, (7)

where tr(·) denotes the trace of the tensor, λ and µ are the 
Lame parameters

λ = νE

(1 + ν)(1 − 2ν)
, µ = E

2(1 + ν)
, (8)

where E is the Young’s modulus and ν is the Poisson’s ratio. 
To prevent cracking in the compression region, the strain 
energy density should be split into positive and negative 
parts

ψe(ε) = g(ϕ)ψ+
e (ε) + ψ−

e (ε). (9)

Furthermore, a degradation function g(ϕ) is introduced for 
the tension part. Here, ψ+

e (ε) and ψ−
e (ε) are the strain ener-

gies obtained by the spectral decomposition of the strain 
tensor with the form provided in [8]

ψ±
e (ε) = λ

2
⟨tr(ε)⟩2 + µtr

[
(ε±)2

]
, (10)

The strain tensor ε is split into positive (ε+) and negative 
(ε−) part by spectral decomposition

ε± =
d∑

a=1
⟨εa⟩± na ⊗ na (11)

where ⟨x⟩± = (x ± |x|) /2, d is the dimension, ε+ and 
ε− represent the tensile and compressive modes of ε, 
respectively.

Besides, g(ϕ) in Eq.(9) is the degradation function

g(ϕ) = [(1 − ϕ)2 + κ], (12)

where the small parameter κ is added to prevent numerical 
singularity.

2.3 Governing equations

By referring to the previous equations, the total potential 
energy can be written as

Ψ(u, ϕ) =
∫

Ω

{[
(1 − ϕ)2 + κ

]
ψ+

e (ε) + ψ−
e (ε)

}
dΩ

+
∫

Ω
G

[
ϕ2

2l0
+ l0

2
|∇ϕ|2

]
dΩ − Ψext.

 (13)

According to Hamilton’s principle, the variation of Ψ with 
respect to u, ϕ yields the following bilinear form
{Au(u, v; ϕ) = Fu(v),

Aϕ1(ϕ, c; Ht) + Aϕ2(ϕ, c) + Aϕ3(ϕ, c) = Fϕ(c),  (14)

where
Fig. 1 Body with an internal crack: a sharp crack; b diffusive crack
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C =∂σ

∂ε
=

[
(1 − ϕ)2 + κ

]

EMPTY

[
λH2 (⟨tr(ε)⟩+) I ⊗ I + 2µ

∂ε+

∂ε
: ∂ε+

∂ε

]

+ λH2 (−⟨tr(ε)⟩−) I ⊗ I + 2µ
∂ε−

∂ε
: ∂ε−

∂ε

 (26)

3 Virtual element method for phase field 
fracture

As described in many works [5, 11], solving the equations 
(14) is often very time-consuming. One important reason is 
that, for the above phase field fracture model, a very small 
length scale l0 is needed to accurately approximate the 
crack. To improve computational efficiency, an estimate of 
the crack path can be made and local mesh refinement can 
be performed on the designated domain. In addition, adap-
tive mesh can be used to automatically refine the mesh based 
on the phase field value. One simple approach to adaptively 
refine the mesh is based on hanging nodes.

The virtual element method (VEM) is a new numerical 
technique which can use arbitrarily shaped elements for the 
geometric discretization. This feature allows the use of non-
matching elements for the adaptive refinement during phase 
field fracture simulations. As mentioned before, the tradi-
tional virtual element method requires additional stabiliza-
tion terms, which refuce the generality of the method and 
needs adjustement of the stabilization parameters. Thus, a 
stabilization free formulation of the virtual element method 
is preferable.

3.1 Function spaces and projection operators

Let Th be a non-overlapping partition of Ω with NE  ele-
ments, Eh be the set of edge of Th. For each element E ∈ Th, 
the element boundary is denoted by ∂E with outer normal 
by nE . Besides, the symbol NV

E  represents the number of 
edges of polygon E and hE  is the diameter.

We firstly introduce a projection operator Π∇
1,E : H1 → P1 

by




∫

E

∇
(
Π∇

1,Ev − v
)

· ∇p1dΩ = 0, ∀v ∈ H1(E), p1 ∈ P1(E),

1
NV

E

NV
E∑

i=1

(
Π∇

1,Ev − v
)

(Vi) = 0,

 (27)

where Vi is the ith vertex. We can construct the first order 
virtual element space V1(E) as

V1(E) =
{

v ∈ H1(E) : ∆v ∈ P0(E) in E, v|e ∈ P1(e)
}

. (28)

Au(u, v; ϕ) =
∫

Ω
σ(u; ϕ) : ε(v)dΩ,  (15)

Fu(v) =
∫

Ω
f · vdΩ +

∫

ΓN

tn · vdΓ,  (16)

Aϕ1(ϕ, c; Ht) =
∫

Ω
2cHtϕdΩ,  (17)

Aϕ2(ϕ, c) =
∫

Ω

G
l0

cϕdΩ,  (18)

Aϕ3(ϕ, c) =
∫

Ω
Gl0∇ϕ · ∇cdΩ,  (19)

Fϕ(c) = 2cHtdΩ,  (20)

where the anisotropic history variable Ht = maxt∈(0,T ] ψ+
e  

has to be introduced for the irreversibility of crack growth.
In the above equations, the stress tensor follows from the 

derivative of strain energy with respect to the strain tensor

σ = ∂ψe(ε)
∂ε

=
[
(1 − ϕ)2 + κ

] ∂ψ+
e (ε)
∂ε

+ ∂ψ−
e (ε)
∂ε

. (21)

By utilizing Eq.(10), the stress tensor can be obtained in a 
more complete form as

σ =
[
(1 − ϕ)2 + κ

]
(

1
2

λ
∂ ⟨tr(ε)⟩2

+
∂ε

+ µ
∂(ε+ : ε+)

∂ε

)

+ 1
2

λ
∂ ⟨tr(ε)⟩2

−
∂ε

+ µ
∂(ε− : ε−)

∂ε
.

 (22)

According to the chain rule, we have

∂ ⟨tr(ε)⟩2
±

∂ε
=

∂ ⟨tr(ε)⟩2
±

∂ ⟨tr(ε)⟩±

∂ ⟨tr(ε)⟩±
∂tr(ε)

: ∂tr(ε)
∂ε

= 2 ⟨tr(ε)⟩± H(± ⟨tr(ε)⟩±)I,

 (23)

∂tr
(
ε2

±
)

∂ε
=

∂tr
(
ε2

±
)

∂ε± : ∂ε±

∂ε
= 2ε± : ∂ε±

∂ε
,  (24)

where H stands for the Heaviside function. With these 
results the stress tensor can be expressed by

σ =[(1 − ϕ)2 + κ]
[
λ⟨tr(ε)⟩+H(⟨tr(ε)⟩+)I + 2µε+ : ∂ε+

∂ε

]

+ λ⟨tr(ε)⟩−H(−⟨tr(ε)⟩−)I + 2µε− : ∂ε−

∂ε
.

 (25)

The elastic constitutive tensor follows from the derivative 
of the stress tensor with respect to the strain tensor
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Then, a discrete bilinear form without any stabilization term 
is constructed on each element E as

aE
h (vh, wh) :=

(
Π0

l,E∇vh, Π0
l,E∇wh

)
. (35)

Lastly, we consider the standard scalar L2 projection from 
V1(E) to P1(E), which can be explicitly expressed as
∫

E

(
Π0

1,Ev − v
)

p1dΩ = 0. (36)

We can check from the definition of V1(E) that Π0
1,E = Π∇

1,E  
holds true in the lowest order case.

3.2 Stabilization-free VEM for phase field fracture

The stabilization-free virtual element method is selected 
for the variational formulation (see Eq.(14)). Two differ-
ent projection operators, which are discussed in section 3.1, 
are employed. For a matrix description, the H1 projection 
Π∇

1,Evh can be expanded in the basis P1(E) as

Π∇
1,Evh = mT

1 Π∇
1,∗ṽ = mT

1 Π0
1,∗ṽ, (37)

where m1 is the first order scaled polynomial, Π∇
1,∗ and 

Π0
1,∗ are the matrices representation of operator Π∇

1,E  and 
Π0

1,E  with respect to the basis of P1(E), respectively.
For the L2 projection operator, we can denote Πm as the 

matrix representation of the operator Π0
l,E∇ with respect to 

the basis of [Pl(E)]2. Then the gradient of the variable vh 
can be approximated as

∇vh = Π0
l,E∇vh = (Np)T Πmṽ, (38)

where

(Np)T :=
[
1 ξ η · · · ηl 0 0 0 · · · 0
0 0 0 · · · 0 1 ξ η · · · ηl

]
=

[
mT

l
mT

l

]
, (39)

and ml is the basic for the scaled polynomials of order l.
Using the above definition, the projection between Π∇

1,∗ϕ 
and ϕh can be expressed as

Π∇
1,∗ϕ = mT

1 Π∇
1,∗ϕ̃, (40)

where ϕ̃ is the vector consisting of the values ϕh of each 
node in element E. Besides, the strain ε( ε̂ in Voigt notation) 
can be approximated by

ε̂(u) = A
[
(Np)T Πm ⊗ I2

]
ũ = A (Np)T Πmũ (41)

The values at vertices in E are selected as the degrees of 
freedom χ.

For each polygon element E ∈ Th, based on integration 
by parts and Gaussian divergence theorem, Eq.(27) is fur-
ther expanded into
∫

E

∇Π∇
1,Ev · ∇p1dΩ = −

∫

E

v · ∆p1dΩ +
∫

∂E

v · ∂p1

∂n
dΓ. (29)

For the first-order VEM space, ∆p1 = 0. In this case, the 
projection operator Π∇

1,E  can be solved based on the degrees 
of freedom χ and additional constant in Eq.(27). Then, a 
discrete bilinear form is constructed on each element E as

aE
h (vh, wh) =aE

(
Π∇

1,Evh, Π∇
1,Ewh

)

+ SE
((

I − Π∇
1,E

)
vh,

(
I − Π∇

1,E

)
wh

)
,

vh, wh ∈ Vh
1

 (30)

where SE  is a symmetric bilinear form or stabilization term.
There exist many choices for stabilization terms, but they 

become more complicated for nonlinear problems. For mod-
els that use spectral decomposition for both the stress tensor 
and the constitutive tensor, the selection of the stabilization 
term is more complicated. Therefore, we will construct the 
VEM without stabilization terms.

Inspired by Ref. [34], the basic idea of the stabilization-
free virtual element method (SFVEM) is to modify the vir-
tual element space to allow the calculation of the higher 
order L2 projection for the gradient. We can construct the 
local enlarged enhancement virtual element space based on 
the higher order polynomial projection for given l ∈ N

V1,l(E) :=
{

v ∈ H1, v|∂E : v|e ∈ P1(e), ∆v ∈ Pl+1(E)
}

. (31)

Let Π0
l,E∇ be the L2 projection of the gradient of function 

in V1,l to [Pl(E)]2 by the orthogonality condition
∫

E

p · Π0
l,E∇vdΩ =

∫

E

p · ∇vdΩ, p ∈ [Pl(E)]2 . (32)

Expanding the right side of Eq.(32) yields
∫

E

p · ∇vdΩ =
∫

∂E

p · nEv −
∫

E

(divp) vdΩ. (33)

The last term in (33) is computable as ∫
E

(divp) vdΩ =
∫

E
(divp) Π∇

1,EvdΩ. Then, the projec-
tion Π0

l,E∇ can be solved. The parameter l should satifsfy 
the following condition for the lowest orders case [34, 39]

(l + 1)(l + 2) > NV
E − 1. (34)

1 3
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4 Finite element method for phase field 
fracture

Within the finite element method, the solution domain Ω is 
discretized by using a mesh family {Th}. The bacis func-
tion of function element space is known and the variables 
can be approximated by the standard first-order FEM shape 
function

u =
n∑

I=1
NE

uI(x)uE
I = Nũ, ϕ =

n∑
I=1

NE
ϕI(x)ϕE

I = Nϕ̃. (50)

Then, the residual for the elastic field Ru and the phase field 
Rϕ can be written as

Ru
E = −

∫

E

BT
uσ̂dΩ,  (51)

Rϕ
E = −

∫

E

Gl0BT
ϕ ∇ϕdΩ −

∫

E

G
l0

NT ϕdΩ

+
∫

E

2(1 − ϕ)NT HtdΩ,

 (52)

where Bu and Bϕ are the spacial derivatives of the shape 
functions. The stiffness matrix can be obtained for each ele-
ment by

Kuu
E = −∂Ru

E

∂ũ
=

∫

E

BT
uĈBudΩ,  (53)

Kϕϕ
E = −∂Rϕ

E

∂ϕ̃
=

∫

E

Gl0BT
ϕ BT dΩ

+
∫

E

(
G
l0

+ 2Ht

)
NT NdΩ.

 (54)

Again, the staggered scheme can be applied for the solution 
of the model.

There is no doubt that the finite element method offers 
high efficiency and precision in solving the given phase field 
model. However, a large number of elements are required to 
discretize the geometric model prior to calculation, signifi-
cantly increasing the computational cost.

5 Adaptive refinement strategy and hybrid 
scheme

When using the phase field method to simulate fracture 
problems, a very fine mesh is required in the region of the 
crack to accurately capture the crack propagation process. 
We can predict the crack path and pre-discretize the model 

where ⊗ is the Kronecker product and I2 represents 2 × 2 
order identity matrix, and

A =

[1 0 0 0
0 0 0 1
0 1 1 0

]
, Np = Np ⊗ I2, Πm = Πm ⊗ I2. (42)

Using the above discretization, the residual for the elastic 
field Ru and the phase field Rϕ can be written as

Ru
E = −ΠT

m

∫

E

NpAT σ̂dΩ, (43)

Rϕ
E = − (Πm)T

∫

E

Gl0Np∇ϕdΩ −
(
Π0

1,∗
)T

∫

E

G
l0

m1ϕdΩ

+
(
Π0

1,∗
)T

∫

E

2(1 − ϕ)m1HtdΩ.
 (44)

The stiffness matrix at elemental level can be derived by 
linearization of Eqs.(43) and (44)

Kuu
E = −∂Ru

E

∂ũ
= ΠT

m

∫

E

NpAT ĈANT
p dΩΠm, (45)

Kϕϕ
E = −∂Rϕ

E

∂ϕ̃
=

(
Π0

1,∗
)T

∫

E

m1

(
2Ht + G

l0

)
mT

1 dΩΠ0
1,∗

+ (Πm)T
∫

E

Gl0Np (Np)T dΩΠm

 (46)

In this work, the staggered scheme is selected for the hybrid 
model

ϕ̃t+∆t = ϕ̃t +
(
Kϕϕ

)−1
Rϕ, (47)

ũt+∆t = ũt + (Kuu)−1
Ru. (48)

Integrations in Eqs.(43) to (46) are performed by dividing 
element E into triangles. In fact, the kernel function of the 
above integral only includes polynomials and their prod-
ucts, so the integral can be shifted to the element boundary 
∂E for calculation by using the divergence theorem:
∫

E

ξpηqdΩ = 1
2

∫

∂E

[
ξp+1ηq

p + 1
nx + ξpηq+1

q + 1
ny

]
dΓ, (49)

where n = (nx, ny) is the outward normal.
For the stabilization-free virtual element method, the dis-

cretization format, analysis process and calculation accuracy 
are very similar to traditional finite element method. There-
fore, SFVEM is a very advantageous technique for dealing 
with non-matching meshes and adaptive refinements.
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adaptively generated elements only make up a small part of 
the total quantity of elements. We can use SFVEM only for 
the newly generated elements and use FEM for the quad-
rilateral elements, which will improve our computational 
efficiency.

6 Numerical examples

6.1 Single-edge notched tension test

The first benchmark test considers a square plate contain-
ing a horizontal pre-crack as shown in Fig. 3. The size of 
the square specimen is selected as L = 0.5mm. The bottom 
of the plate is fixed in Y-direction and a vertical displace-
ment uy is applied on the top. The material parameters are 
selected as E = 210GPa, ν = 0.3, G = 2.7 × 10−3kN/
mm. The regularization parameter is selected as l0 = 0.015
mm, The displacement increment is initially selected as 
∆uy = 1 × 10−5 mm for the first 500 time steps. After that, 
the displacement increment is reduced to ∆uy = 1 × 10−6 
mm.

Firstly, we use a non-matching mesh for the calcula-
tion. Since the crack path can be roughly predicted in 
this problem, a pre-refined mesh can be used as shown 
in Fig. 3. The element size in the pre-refined domain is 
hmax = 0.005 < l0/2, and the non-matching meshes are 
used between elements of different sizes. In areas far away 
from the pre-refined domain, we can use quadrilateral mesh 
or polygonal mesh for discretization, as shown in Fig. 3. In 
the case of the quadrilateral mesh, the number of nodes is 
3925. Additionally, for the polygonal mesh, the number of 
nodes is 6249. The finite element method with a fine mesh 
(the number of nodes is 40501) is chosen for comparison.

The displacement-loading curves using the pre-refined 
non-matching meshes are computed and given in Fig. 4. 
The curves are in good agreement with the curve obtained 
by FEM with a fine mesh. Since a non-matching mesh, see 

with fine elements in the specified area. Additionally, adap-
tive refinement can be used to automatically refine the ele-
ments. Among different possibilites to refine a mesh, the 
hanging-node approach is very simple and especially for 
virtual element method, see [40, 41]. This is due to the pos-
sibility to add additional nodes to a virtual element without 
destroying the continuity.

5.1 Adaptive refinement

In phase field fracture modeling, the phase field threshold 
can be selected as a refinement indicator, a scheme com-
monly employed in previous studies [19, 20, 32]. In this 
work, the elements are marked for refinement if the phase 
field values are higher than the threshold ϕt

ϕi > ϕt (55)

where ϕi is the phase field value in the center of the ele-
ment. The selection of the threshold ϕt will be discussed in 
the examples.

As shown in Fig. 2, during the phase field iteration pro-
cess, if the phase field value at the element center satisfies 
Eq.(55), the element can be devided into different sub-ele-
ments and the refined element may undergo further subdi-
vision. The refinement process will stop until the effective 
element size is hc, where hc is the threshold of element size. 
In the adaptive refinement scheme, the displacement u and 
phase field variable ϕ should be projected from the coarser 
mesh to the finermesh, respectively.

5.2 Hybrid scheme

With adaptive technology, the computational domain can 
initially be divided into larger quadrilateral elements (polyg-
onal elements are also acceptable). During mesh adaptation, 
polygonal elements and quadrilateral elements with addi-
tional nodes are generated as shown in Fig. 2. In fact, the 

Fig. 2 Adaptive mesh refinement and polygon elements generation
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The displacement-loading curve for the adaptive mesh is 
obtained, see Fig. 5. The curve is in good aggrement with 
the curve obtained by FEM with the fine mesh. Very similar 
results can be observed for different adaptive thresholds ϕt. 
In fact, a larger threshold ϕt will further improve the com-
putational efficiency. Besides, the solution from the hybrid 
adaptive finite element phase-field method [20] is also given 
for comparison, see Fig 5. The load–displacement curves 
obtained by SFVEM are in better agreement with the curve 
obtained in [8].

The calculation times for different meshes and differ-
ent methods are shown in Table 1. In this work, we use 

Fig. 3b and c is used, the number of degrees of freedom is 
low and the computing speed is faster than FEM at the fine 
mesh. Besides, the SFVEM can discretize the domain in a 
more flexible manner, even polygonal meshes. We also con-
sidered the conventional VEM for the phase-field fracture 
under the current constitutive assumption. The displace-
ment-loading curve obtained by the conventional VEM is 
given in Fig. 4. Compared with the conventional VEM, the 
SFVEM proposed in this work are in better agreement with 
the FEM results.

The adaptive technique is also used in this example. 
In this case, the initial element size of the coarse mesh is 
hmax = 0.0385 mm. The maximum refinement level is 3 
and the sizes of the refined elements are 0.0048125 mm, 
smaller than l0/2. In this example, the adaptive threshold 
ϕt is selected as ϕt = 0.2 and ϕt = 0.4 for comparison. 

Fig. 5 Force-displacement curves for single edge notched tension test. 
Adaptive SFVEM with different threshold ϕt and reference results

 

Fig. 4 Force-displacement curves for single edge notched tension test. 
SFVEM for non-matching meshes

 

Fig. 3 Single-edge notched tension test, a Geometry, loading and boundary conditions; b discretization of the specimen by using non-matching 
meshes (quad mesh); c discretization of the specimen by using non-matching meshes (polygon mesh)
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the same as in the previous example. A horizontal right-
ward displacement ux is applied on the top of the square 
plate, as shown in Fig. 7. The regularization parameter is 
selected as l0 = 0.015mm, The displacement increment is 
initially selected for ∆ux = 1 × 10−5 mm for the first 800 

MATLAB in a notebook with a 2.5 GHz 8-Core Intel Core 
i9 processor. It can be seen that the use of adaptive mesh can 
greatly improve the computational efficiency of phase field 
fracture analysis.

The crack patterns for tensile loading are illustrated at 
different loading times in Fig. 6. Very similar crack patterns 
of three meshes at different loading time can be observed.

6.2 Single-edge notched pure shear test

In this example, the single edge notched pure shear test 
is simulated. The geometry and material parameters are 

Table 1 Single edge notched tension test: computational times
Method Times (s)

FEM 26062
SFVEM,adaptive mesh, ϕt = 0.2 2790 10.7%
SFVEM,adaptive mesh, ϕt = 0.4 1300 4.9%

Fig. 6 Crack patterns for single notched plate for different times. a SFVEM with non-matching quadrilateral mesh, b SFVEM with non-matching 
polygonal mesh, c SFVEM with adaptive mesh
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can be obtained. The crack patterns for different times are 
given in Fig. 9.

It is worth noting that if the traditional VEM (with sta-
bilization) is used, the convergence rate in this case is sig-
nificantly slower, and in some instances, no convergent 
results can be obtained for the current anisotropic phase-
field model. Some special stabilization technical in VEM 
[32] should be introduced to obtain a better convergence. 
This highlights the advantages of the stabilization-free 
virtual element method in addressing phase-field fracture 
problems.

6.3 L-shape panel under mixed-mode failure

The mixed-mode failure test of a L-shape panel was car-
ried out experimentally in [42]. The geometry, loading and 
boundary conditions of the specimen is given in Fig. 10. 
The specimen is fixed at the bottom and displacement load 
is applied upward at a distance of 30 to the right edge. 
The properties parameters are selected as E = 25.85 GPa, 
ν = 0.18, G = 9.5 × 10−5 kN/mm. The regularization 
parameter is chosen as l0 = 2 mm.

During the loading process, the displacement increment 
in the vertical direction ∆u = 2 × 10−3 mm for each time 
step. The mesh adaptive refinement is adopted and the initial 
geometry is discretized with 1875 coarse elements with ele-
ment size hmax = 10 mm. The maximum refinement level 
is 4, and the resulting size of the fine elements is 0.625 mm, 
smaller than l0/2. To enhance computational efficiency, 
the stabilization-free virtual element method is applied to 
polygonal elements (e.g., elements with hanging nodes), 
while the finite element method is employed for quadrilat-
eral elements. Besides, the finite element method with very 

time steps. Then the displacement increment is reduced to 
∆ux = 5 × 10−6 mm for the next 3400 time steps.

A non-matching mesh as shown in Fig. 7 is considered as 
well as the adaptive mesh refinement. The element size of 
the initial mesh for the adaptive method is hmax = 0.0385. 
The maximum refinement level is 3 and the resulting size 
of the fine elements is 0.0048125, smaller than l0/2. In this 
example, the adaptive threshold ϕt is selected as ϕt = 0.2 
and ϕt = 0.4 for comparison.

The displacement-loading curve for the adaptive mesh is 
obtained, see Fig. 8. The load–displacement curves obtained 
by non-matching mesh and adaptive mesh are all in good 
agreement with the curve obtained by FEM with the fine 
mesh. The computation with the adaptive mesh only takes 
20% and 14% of the computation time used for FEM with 
a fine mesh (the number of nodes is 40501) for ϕt = 0.2 
and ϕt = 0.4, respectively. Besides, the load–displacement 
curve obtained by VEM with local pre-refinement mesh 
[28] is given for comparison. Easy to find that similar results 

Fig. 8 Load–displacement curve of the single edge notched pure shear 
test

 

Fig. 7 Single-edge notched pure shear 
test, a Geometry, loading and bound-
ary conditions; b discretization of the 
specimen by using non-matching mesh 
(quad mesh)
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virtual element technology is in good agreement with the 
classical adaptive finite element method. The crack propa-
gation pattern and corresponding hybrid adaptive meshe are 
illustrated in Fig. 12. It can be seen that the crack propaga-
tion path is in good agreement with the experimental results. 
In addition, due to the use of adaptive technology, the com-
putational efficiency is greatly improved. Compared with 

fine mesh (with 58493 elements and 58849 nodes) is used 
for comparison.

The load–displacement curve is given in Fig. 11. Easy 
to find that the reaction force agrees very well with the 
solution obtained by FEM with a fine mesh. Besides, we 
consider the solution obtained by adaptive finite element 
method using a volume weighted quickselect algorithm, see 
[19]. Obviously, the adaptive algorithm combined with the 

Fig. 10 L-shaped panel, a Geometry, 
loading and boundary conditions; b 
Crack paths

 

Fig. 9 Crack patterns for single notched plate pure shear test for different times. a SFVEM with non-matching mesh, b SFVEM with adaptive 
mesh (ϕt = 0.2)
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crack path propagates without any initial fracture. Gener-
ally, this is not possible using conventional discontinuity 
methods, such as XFEM. The reaction force curves obtained 
by STVEM and NURBS-based isogeometric approach [43] 
are given in 15.

7 Conclusion

In this work, the stabilization-free virtual element method is 
proposed for the 2D phase field modeling of fracture. Tak-
ing the capability of the virtual element method to accom-
modate polygonal elements, techniques such as pre-refined 
meshes or adaptive meshing can be employed to enhance 

FEM with fine mesh, the solution time is reduced by nearly 
90%.

6.4 Notched plate with hole

A notched plate containing a hole is considered here, with 
the geometric description and the boundary conditions 
given in Fig. 13. The specimen is fixed (ux = uy = 0) at the 
bottom hole and displacement uy = u > 0 is given at the 
top hole. The material properties of the specimen is assumed 
as E = 6GPa, ν = 0.22(λ = 1.94 GPa and ν = 2.45 GPa). 
Besides, G = 2.28 × 10−3 kN/mm, and l0 = 0.1 mm. The 
initial computational domain consists of 1767 elements and 
1892 nodes. The numerical simulations have been performed 
with fixed displacement increments of ∆u = 1 × 10−3 mm.

The phase field evolution of the continuously monitored 
displacement is shown in Fig. 14. It can be seen that as the 
displacement load increases, the crack expands and the 
mesh adapts accordingly. Due to the use of the phase field 
model, a very significant benefit observed is that the second 

Fig. 13 Notched plate with hole: geometry and boundary conditions

 

Fig. 12 The crack growth of the L-shaped panel, auy = 0.4, buy = 0.50, cuy = 1.00

 

Fig. 11 Load–displacement curve of L-shaped panel test
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