
Computer Methods in Applied Mechanics and Engineering 435 (2025) 117683 

0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Space-time virtual element method for elastodynamics: Theory,
applications, and code development
Bing-Bing Xu ∗, Philipp Junker , Peter Wriggers
Institute of Continuum Mechanics, Leibniz Universität Hannover, Hannover, Germany

A R T I C L E I N F O

Keywords:
Virtual element method
Dynamics
Space time

A B S T R A C T

In this work, a space-time virtual element method is presented for the discretization of the
two-dimensional elastodynamics in a space-time cylinder. The basic idea of the space-time
scheme is to treat time as an additional dimension. This approach has been extensively
applied to numerous initial value problems based on the finite element method and virtual
element method. However, there has been no report on the application of the space-time
virtual element method in elastodynamics. The variational formulation and space-time bilinear
format are derived based on Hamilton’s principle to achieve this. The discretization space is
obtained by the virtual element method in space and the upwind finite element method in
time. The space-time mesh is obtained as a tensor product of space and time meshes, then
the element stiffness matrix for the elastodynamic problem can be obtained based on the
Kronecker product directly. Some two-dimensional examples solved by the developed space-
time virtual element method are given to demonstrate the accuracy and stabilization. MATLAB
codes for the space-time virtual element and finite element methods can be downloaded from
https://github.com/Qinxiaoye/VEM-spcae-time-dynamic.

1. Introduction

The virtual element method (VEM) [1,2] is an extension of the finite element method (FEM) to general polygonal or polyhedral
elements. Different from the finite element method and some other polygonal finite element methods, the virtual element method
avoids the explicit calculation of shape functions in polygonal elements by defining a projection from the virtual element space
to the polynomial space. Given the flexibility of the virtual element method in terms of element shape and degree of freedom
definition, the method has been applied in a variety of different applications. Current applications include linear elastic mechanical
problems [3–8], plate and shell problems [9–11], hyperelastic materials at finite deformations [12–15], elastoplastic mechanics
problems [16], contact problems [17–20] and finite elastoplastic deformations [21–23]. For details, see the latest books of VEM in
engineering [24].

The virtual element method is also developed for initial–boundary value problems where the governing equation is parabolic
or hyperbolic. For example, transient heat conduction problems, wave problems [25], and dynamics problems [26–29]. In the
above-mentioned VEM literature, the time-dependent problems are solved by a virtual element discretization in space with a
time-stepping scheme in time (explicit time difference, Newmark method, etc.). With suitable parameter choices, the Newmark
method is unconditionally stable. However, it is not a strictly symplectic method, which can result in phase delay during long-term
dynamic simulations. For nonlinear problems, iterations are required at each time step of the Newmark method, resulting in low
computational efficiency.
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Taking Hamilton’s principle of stationary of action as a starting point for the solution of dynamic problem has a long history. First
ormulations can be found in Argyris et al. [30]. Due to the limited computational power at that time, many different incremental

solution scheme like finite difference and the Newmark method were developed. Nowadays with powerful computers aid parallel
computation technique, the use of Hamilton’s principle has gained a revival in order to construct a method for solving time-
dependent problems in a space–time scheme. The basic idea of the space–time format is to discretize time as a dimension with
the time being an additional space variable. Due to the advantages of the space–time scheme, including energy conservation,
ease of parallel computing, and adaptive meshing, this method has seen significant development over the past three decades [31–
33]. Several numerical approaches are available for discretizing the space–time scheme, with the finite element method (FEM)
being the most common. Up to now, the space–time finite element methods have been applied to dynamic problems [34–36],
acoustic wave problems [37], elastic wave problems [38], fluid dynamics problems [39,40], etc. Recent work based on Hamilton’s
principle, thermo-mechanically coupled models can be obtained by evaluating of the stationarity conditions for all thermodynamic
state variables. It is also possible to apply the space–time format for elastic wave propagation, visco-elasticity, and elastoplastic
roblems using FEM [41,42]. In addition to the finite element method, the isogeometric method has advantages for specific

applications [43,44].
Since the virtual element method can use arbitrary polygonal meshes (which is conducive for adaptive techniques), different

ormats of space–time VEM have been used for the transient heat conduction equation [45,46], the dissipative wave equation [47],
and the elastic wave equation [48]. However, up to now, there has been no report on the application of space–time VEM in elasto-
dynamics problems. This paper designs and analyzes a space–time virtual element method for solving the 2D dynamic problem. In the
virtual element method, since the projection operator is calculated based on the bilinear format, a ‘‘structured’’ numerical approach
can be used to avoid the definition of additional degrees of freedom in time direction. In the ‘‘structured’’ numerical approach,
the space–time mesh is obtained as a tensor product of space and time meshes. For this 2 + 1 dimensional problem, the VEM for
‘‘space’’ discretization and FEM for ‘‘time’’ discretization are selected. The advantage of this technique is that the computational
methods used to construct the projection operator in VEM for static problems can be directly applied. Furthermore, integration is
performed on the two-dimensional polygonal mesh and the one-dimensional time mesh, enabling the final stiffness matrix to be
obtained directly through the Kronecker product. To ensure stability of the space–time VEM, a time-upwind scheme is introduced.

This paper is divided into the following parts. The variational formulation of the dynamic problems based on Hamilton’s
rinciple is reviewed in Section 2. Besides in this section, the space–time bilinear format and time-upwind stabilization are also

expanded. Then, the space–time virtual element method for elasto-dynamics is discussed in Section 3. The projection operator,
stabilization term and the formation of residual and stiffness matrix are discussed. For comparison, the finite element method
for space–time dynamics is summarized in Section 4. Numerical examples for two-dimensional elastodynamics are presented in
ection 5. The conclusion and discussion will be provided in Section 6. The code, developed in this work can be downloaded from

https://github.com/Qinxiaoye/VEM-spcae-time-dynamic.

2. Variational formulation

2.1. Variational formulation based on Hamilton’s principle

In this work, the linear elasto-dynamic problem is considered with the space–time technique. Given a Lipschitz-bounded domain
∈ R𝑛, where 𝑛 = 1, 2, 3 and the space–time cylinder

𝑄 ∶= 𝛺 × 𝐼 (1)

where time interval 𝐼 = (0, 𝑇 ), with 𝑡 ∈ 𝐼 , Hamilton’s action functional is then formulated as integration of the momentum vector
∶= 𝜌∇𝑡𝒖 along the path [𝒖0, 𝒖𝑇 ], i.e.,

 ∶= ∫𝛺 ∫

𝒖𝑇

𝒖0
𝒑 ⋅ d𝒖 d𝑉 = ∫𝛺 ∫

𝑇

0
𝜌∇𝑡𝒖 ⋅ ∇𝑡𝒖 d𝑡 d𝑉 = ∫𝐼 ∫𝛺

𝜌‖∇𝑡𝒖‖2 d𝑉 d𝑡 = ∫𝐼
2 d𝑡, (2)

where the definition of the temporal derivative d
d𝑡 =∶ ∇𝑡 is used. The kinetic energy is introduced as

 = ∫𝛺
1
2
𝜌‖∇𝑡𝒖‖2 d𝑉 . (3)

Making use of the balance of energy (1st law of thermodynamics) yields

∫𝐼
 d𝑡 + ∫𝐼

 d𝑡 = 0, (4)

with the total potential  defined as

 ∶= ∫𝛺
𝛹 d𝑉 − ∫𝛺

𝒇̄ ⋅ 𝒖 d𝑉 − ∫𝛤𝜎
𝒕̄ ⋅ 𝒖 d𝛺 , (5)

where 𝒇̄ is the volume force and 𝒕̄ is the external pressure on the Neumann boundary 𝛤𝜎 . Besides,

𝛹 ∶= 𝜆
2
(tr (𝜀))2 + 𝜇 𝜀 ∶ 𝜀 = 1

2
𝜀 ∶ D ∶ 𝜀 (6)

is the free energy density with the elasticity tensor D ∈ R𝑑×𝑑×𝑑×𝑑 ,
( )
D𝑖𝑗 𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇 𝛿𝑖𝑘𝛿𝑗 𝑙 + 𝛿𝑖𝑙𝛿𝑗 𝑘 , (7)

2 
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where 𝜆 and 𝜇 are the Lame constant and shear modulus. The strain tensor is defined as

𝜀 = 1
2
(

∇𝒖 + ∇𝒖𝑇 ) =∶ ∇sym𝒖 = 𝜀(𝒖). (8)

Then Hamilton’s action function is reformulated as

 = ∫𝐼
( − ) d𝑡. (9)

Let us introduce a mixed formulation by introducing the vector of velocity 𝒗 which is treated as independent variable. For such a
ixed formulation, the kinetic energy is reformulated as

 = ∫𝛺
𝜌𝒗 ⋅ ∇𝑡𝒖 − 1

2
𝜌‖𝒗‖2 d𝛺 , (10)

following [42]. It is obvious that this formulation reduces to the original kinetic energy as soon as 𝒗 ≡ ∇𝑡𝒖.
Then, Hamilton’s principle of stationary action requires

 = 
[

𝒗, 𝒖,∇sym𝒖,∇𝑡𝒖
]

→ stat
𝒗,𝒖

⇔ 𝛿 = 𝛿𝒗 + 𝛿𝒖 = 0 ∀𝛿𝒗, 𝛿𝒖. (11)

Due to the independence of 𝛿𝒗 and 𝛿𝒖, the stationarity condition can lead to
{

𝛿𝒗 = 0 ∀𝛿𝒗

𝛿𝒖 = 0 ∀𝛿𝒖
(12)

with
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝒗 = ∫𝐼 ∫𝛺
𝜌
(

∇𝑡𝒖 − 𝒗
)

⋅ 𝛿𝒗 d𝑉 d𝑡 = 0 ∀𝛿𝒗

𝛿𝒖 = ∫𝐼 ∫𝛺
𝜌𝒗 ⋅ ∇𝑡𝛿𝒖 d𝑉 d𝑡 − ∫𝐼

(

∫𝛺

(

𝝈 ∶ 𝜀 (𝛿𝒖) − 𝒇̄ ⋅ 𝛿𝒖
)

d𝑉 − ∫𝛤𝜎
𝒕 ⋅ 𝛿𝒖 d𝛤

)

d𝑡 = 0 ∀𝛿𝒖
(13)

where the stress 𝝈 = 𝜕 𝛹
𝜕 𝜀 = D ∶ 𝜺 is applied. Employing integration by parts in time for the first term in (13)2 transforms the

stationarity conditions to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫𝐼 ∫𝛺
−𝜌𝒗 ⋅ 𝛿𝒗 d𝑉 d𝑡 + ∫𝐼 ∫𝛺

𝜌∇𝑡𝒖 ⋅ 𝛿𝒗 d𝑉 d𝑡 = 0 ∀𝛿𝒗

∫𝐼 ∫𝛺
𝜌∇𝑡𝒗 ⋅ 𝛿𝒖 d𝑉 d𝑡 + ∫𝐼 ∫𝛺

𝝈 ∶ 𝛿∇sym𝒖 d𝑉 d𝑡 = ∫𝐼

(

∫𝛺
𝒇̄ ⋅ 𝛿𝒖 d𝑉 + ∫𝛤𝜎

𝒕 ⋅ 𝛿𝒖 d𝛤

)

d𝑡
(14)

where the property 𝛿𝒖|0 = 𝛿𝒖|𝑇 ≡ 𝟎 is utilized. Note that the initial condition (position, velocity) can be applied directly without
any further modification.

2.2. Space–time bilinear format and time-upwind stabilization

Due to the introduction of the velocity 𝒗 as independent variable, Eq. (14) is a two-field weak-form equation. The above
ormulation can be discretized by the finite element method [35,36] or virtual element method. Based on Eq. (14) the bilinear

form can be obtained as

𝐴(𝒗, 𝒖, 𝛿𝒗, 𝛿𝒖) =
(

𝐴𝒗𝒗(𝛿𝒗, 𝒗) + 𝐴𝒗𝒖(𝛿𝒗, 𝒖)

𝐴𝒖𝒗(𝛿𝒖, 𝒗) + 𝐴𝒖𝒖(𝛿𝒖, 𝒖)

)

=

(

𝟎
𝑙(𝛿𝒖)

)

(15)

where

𝐴𝒗𝒗(𝛿𝒗, 𝒗) = ∫

𝑇

0 ∫𝛺
−𝜌𝛿𝒗 ⋅ 𝒗 d𝛺 d𝑡,

𝐴𝒗𝒖(𝛿𝒗, 𝒖) = ∫

𝑇

0 ∫𝛺
𝜌𝛿𝒗 ⋅ ∇𝑡(𝒖) d𝛺 d𝑡,

𝐴𝒖𝒗(𝛿𝒖, 𝒗) = ∫

𝑇

0 ∫𝛺
𝜌𝛿𝒖 ⋅ ∇𝑡𝒗 d𝛺 d𝑡,

𝐴𝒖𝒖(𝛿𝒖, 𝒖) = ∫

𝑇

0 ∫𝛺
𝜺(𝛿𝒖) ∶ D ∶ 𝜺(𝒖) d𝛺 d𝑡,

(16)

and

𝑙(𝛿𝒖) = ∫

𝑇

0

(

∫𝛺
𝒇̄ ⋅ 𝛿𝒖 d𝛺 + ∫𝛤𝜎

𝒕 ⋅ 𝛿𝒖 d𝛤

)

d𝑡. (17)

Using the formulation based on Eq. (15) results for some applications to an unstable response. Thus, to ensure stability of the
numerical solution, the time-upwind scheme introduced in [36] should be applied. This scheme replace the test functions 𝛿𝒖 and
3 
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𝛿𝒗 by 𝛿𝒖+ 𝜃 ℎ∇𝑡(𝛿𝒖), 𝛿𝒗+ 𝜃 ℎ∇𝑡(𝛿𝒗), where 𝜃 is a positive constant and ℎ is the element length in time direction. The discrete scheme
in Eq. (15) is now reformulated as

𝐴𝒗𝒗(𝛿𝒗, 𝒗) = ∫

𝑇

0 ∫𝛺
−𝜌

(

𝛿𝒗 + 𝜃 ℎ∇𝑡(𝛿𝒗)
)

⋅ 𝒗 d𝛺 d𝑡,

𝐴𝒗𝒖(𝛿𝒗, 𝒖) = ∫

𝑇

0 ∫𝛺
𝜌
(

𝛿𝒗 + 𝜃 ℎ∇𝑡(𝛿𝒗)
)

⋅ ∇𝑡(𝒖) d𝛺 d𝑡,

𝐴𝒖𝒗(𝛿𝒖, 𝒗) = ∫

𝑇

0 ∫𝛺
𝜌
(

𝛿𝒖 + 𝜃 ℎ∇𝑡(𝛿𝒖)
)

⋅ ∇𝑡𝒗 d𝛺 d𝑡,

𝐴𝒖𝒖(𝛿𝒖, 𝒖) = ∫

𝑇

0 ∫𝛺
𝜺
(

𝛿𝒖 + 𝜃 ℎ∇𝑡(𝛿𝒖)
)

∶ D ∶ 𝜺(𝒖) d𝛺 d𝑡,

(18)

and

𝑙(𝛿𝒖) = ∫

𝑇

0

(

∫𝛺
𝒇̄ ⋅

(

𝛿𝒖 + 𝜃 ℎ∇𝑡(𝛿𝒖)
)

d𝛺 + ∫𝛤𝜎
𝒕 ⋅

(

𝛿𝒖 + 𝜃 ℎ∇𝑡(𝛿𝒖)
)

d𝛤

)

d𝑡. (19)

The selection of the parameter 𝜃 will be discussed in Section 5.
The virtual element method is used for discretization in the spatial dimension and the Lagrange interpolation (the interpolation

unction in the finite element method) is selected in the time dimension. Of course, the finite element method can also be used for
he discretization in the spatial dimension as Section 4. The basic principle of the virtual element method will be introduced in the
ext.

3. Virtual element method for space–time dynamics

In this work, two-dimensional (𝑑 = 2) elastodynamic problems under small strain assumption is considered. Compared with the
finite element method, very arbitrary mesh division in the space domain is acceptable in VEM. Besides, since its shape function is
projected into the polynomial space, only a single point integration (for 𝑘 = 1) in the space domain is required. These characteristics
lead to great advantages in solving this space–time dynamics using VEM. Next, the basic analysis process in detail for Eqs. (14),
(15) and (18) is given.

3.1. Mesh assumptions

In this work, the tensor-product-in-time set
{

ℎ
}

is selected for the space–time cylinder. As shown in Fig. 1, the space domain
is divided into a lot of non-overlapping polygons

{

 𝒙
ℎ
}

. A polygonal element is defined by the parameters area |𝐸|, barycenter
𝒙𝐸 = (𝑥𝐸 , 𝑦𝐸 )𝑇 , and diameter ℎ𝐸 . The time interval [0, 𝑇 ] is divided into 𝑁𝑇 subintervals 𝑡𝑛 ∶= (𝑡𝑛, 𝑡𝑛+1) with knots 0 = 𝑡0 < 𝑡1 <

< 𝑡𝑁𝑇
= 𝑇 . Each element  in

{

ℎ
}

can be written as 𝒙 ×𝑡, where 𝒙 is the two-dimensional mesh in {

 𝒙
ℎ
}

.

3.2. Projection operators

The discrete form of the space domain 𝛺 is focused firstly. To simplify and avoid misunderstanding, 𝐸 is selected instead of 𝒙
for any 2D element in {

 𝒙
ℎ
}

.
For the use of the virtual element method in the space domain 𝛺, the definition of different projection operators in the virtual

element method should be introduced firs. For the displacement vector 𝒖 and velocity 𝒗 used in Eq. (18), the components of the vector
eparately (similar to the finite element method) can be approximated, so the following 1 projection operator 𝛱∇

𝑘,𝐸 ∶ 1 → 𝑘(𝐸)
ill be introduced as

𝑎𝐸
(

𝑤 −𝛱∇
𝑘,𝐸𝑤, 𝑞𝑘

)

= 0 𝑞𝑘 ∈ 𝑘(𝐸) (20)

where 𝑘 is the order of VEM (in this work the order is selected as 𝑘 = 1), 𝑤 is any scalar, 𝑎𝐸 ∶ 1 ×1 →  is the local counterpart
f the bilinear form 𝑎(∙, ∙), 𝑎𝐸 (𝑝, 𝑞) = ∫𝐸 ∇𝑝 ⋅∇𝑞 d𝛺, ∀𝑝, 𝑞 ∈ 1. To solve the above projection operator, additional conditions should

be added to fix the constant in the definition (20)
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑁𝑉

𝐸

𝑁𝑉
𝐸

∑

𝑖=1
𝛱∇

𝑘,𝐸𝑤 −𝑤 = 0, for 𝑘 = 1,

1
|𝐸|

(

𝛱∇
𝑘,𝐸𝑤 −𝑤

)

d𝛺 = 0, for 𝑘 > 1,

(21)

where 𝑁𝑉
𝐸 is the number of vertices. Then, the actual definition of the virtual element space can be given by

𝐸
ℎ ∶=

{

𝑣 ∈ 1 ∶ 𝑤|𝜕 𝐸 ∈ (𝜕 𝐸), 𝛥𝑤 ∈
(

𝑘−2(𝐸)
)3
}

, (22)

where (𝜕 𝐸) is the boundary element space

(𝜕 𝐸) ∶= {

𝑤 ∈ 𝐶0(𝜕 𝐸) ∶ 𝑤𝐹 ∈ 𝐹 ,∀𝐹 ∈ 𝜕 𝐸}

. (23)

The degrees of freedom (DOFs) for the function space are selected as
4 
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Fig. 1. First-order virtual element tensor-product-in-time meshes.

• the values of 𝑤ℎ at all 𝑁𝑉
𝐸 vertices of the polygon element 𝐸;

• for 𝑘 > 1, the values of 𝑢ℎ at 𝑘 − 1 Gauss–Lobatto quadrature points on each edge 𝑒 ∈ 𝜕 𝐸;
• for 𝑘 > 1, the moments up to order 𝑘 − 2

1
|𝐸|

∫𝐸
𝑤ℎ𝑞𝛼 d𝛺 , ∀𝑞𝛼 ∈ 𝑘−2(𝐸).

Expanding the variable 𝑣ℎ and its projection in different spaces, yields

𝑤ℎ = 𝝓𝑇 𝒘̂ℎ, 𝛱∇
𝑘,𝐸𝑤ℎ = 𝒎𝑇

𝑘𝜫
∇
𝑘,𝐸∗𝒘̂ℎ = 𝝓𝑇𝜫∇

𝑘,𝐸𝒘̂ℎ, (24)

where 𝝓 and 𝒎𝑘 are the basic functions for VEM space 𝐸
ℎ and polynomial space 𝑘, respectively; 𝜫𝑘,𝐸∗ is the matrix formulation

of the Ritz projection operator, □̂ represents the nodal value. Substituting Eq. (24) into Eq. (21) and considering the degrees of
freedom mentioned above, the 1 projection operator can be computed lastly.

By observing the first three formulas of Eq. (18), another projection named 𝐿2 orthogonal projection operator is also needed.
he projection 𝛱0

𝑘,𝐸 ∶ 𝐿2(𝐸) → 𝑘 is defined by
(

𝑤 −𝛱0
𝑘,𝐸𝑤, 𝑞𝑘

)

𝐸
= 0, ∀𝑞𝑘 ∈ 𝑘(𝐸). (25)

The same degrees of freedom (DOFs) in 𝐸
ℎ can be selected. Considering the enhanced VE space in [49], the 𝐿2 orthogonal projection

operators can be calculated. It can be checked that 𝛱∇
𝑘,𝐸 = 𝛱0

𝑘,𝐸 for 𝑘 ⩽ 2. In this paper, the case 𝑘 = 1 is considered, so it is not
necessary to calculate the 𝐿2 orthogonal projection operators additionally.

3.3. Discrete bilinear forms in space domain

Since the tensor-product-in-time meshes  = 𝒙 × 𝑡 (virtual element in the space domain 𝛺 and Lagrange interpolation in
he time domain) is adopted, the bilinear format 𝑎𝐸 (𝒑ℎ, 𝒒ℎ) of the elements in the space domain 𝛺 can be calculated firstly, and

then integrate over time to calculate the last bilinear format 𝐴𝐸 (𝒑ℎ, 𝒒ℎ). In this part, the integral calculation in the space domain is
onsidered.

First, for the general form of the scalar field equation, the approximations 𝑎𝐸ℎ , 𝑚𝐸
ℎ are computable based on the projections

defined above

𝑎𝐸ℎ (𝑝ℎ, 𝑞ℎ) ∶= 𝑎𝐸 (𝛱∇
𝑘,𝐸𝑝ℎ, 𝛱∇

𝑘,𝐸𝑞ℎ) + 𝑆𝐸
((

𝑰 −𝜫∇
𝑘,𝐸

)

𝒑̂ℎ,
(

𝑰 −𝜫∇
𝑘,𝐸

)

𝒒̂ℎ
)

, (26)

𝐸 𝐸 0 0 𝐸
((

0
) (

0
) )
𝑚ℎ (𝑝ℎ, 𝑞ℎ) ∶= 𝑚 (𝛱𝑘,𝐸𝑝ℎ, 𝛱𝑘,𝐸𝑞ℎ) + 𝑅 𝑰 −𝜫𝑘,𝐸 𝒑̂ℎ, 𝑰 −𝜫𝑘,𝐸 𝒒̂ℎ , (27)

5 
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where 𝑆𝐸 and 𝑅𝐸 are the stabilization bilinear forms, 𝑰 is the identity matrix. It is easy to see that our bilinear format requires
additional stabilization terms. Based on the above definition, the following useful integrations can be calculated as:

𝑎𝐸ℎ (𝑝, 𝑞) = ∫𝒙

(

∇𝛱∇
𝑘,𝐸𝑝ℎ

)

⋅
(

∇𝛱∇
𝑘,𝐸𝑞ℎ

)

d𝛺 + 𝑆𝐸
((

𝑰 −𝜫∇
𝑘,𝐸

)

𝒑̂ℎ,
(

𝑰 −𝜫∇
𝑘,𝐸

)

𝒒̂ℎ
)

= 𝒑̂𝑇ℎ

[

(

𝜫∇
𝑘,𝐸∗

)𝑇

∫𝒙

∇𝒎𝑘∇𝒎𝑇
𝑘 d𝛺𝜫∇

𝑘,𝐸∗ +
(

𝑰 −𝜫∇
𝑘,𝐸

)𝑇 (

𝑰 −𝜫∇
𝑘,𝐸

)

]

𝒒̂ℎ

= 𝒑̂𝑇ℎ
(

𝑲𝑐
∇ +𝑲𝑠

∇
)

𝒒̂ℎ = 𝒑̂𝑇ℎ𝑲∇𝒒̂ℎ,

(28)

𝑚𝐸
ℎ (𝑝, 𝑞) = ∫𝒙

(

𝛱0
𝑘,𝐸𝑝ℎ

)

⋅
(

𝛱0
𝑘,𝐸𝑞ℎ

)

d𝛺 + 𝑅𝐸
((

𝑰 −𝜫0
𝑘,𝐸

)

𝒑̂ℎ,
(

𝑰 −𝜫0
𝑘,𝐸

)

𝒒̂ℎ
)

= 𝒑̂𝑇ℎ

[

(

𝜫0
𝑘,𝐸∗

)𝑇

∫𝒙

𝒎𝑘𝒎𝑇
𝑘 d𝛺𝜫0

𝑘,𝐸∗ + |𝐸|

(

𝑰 −𝜫0
𝑘,𝐸

)𝑇 (

𝑰 −𝜫0
𝑘,𝐸

)

]

𝒒̂ℎ

= 𝒑̂𝑇ℎ
(

𝑲𝑐
0 +𝑲𝑠

0
)

𝒒̂ℎ = 𝒑̂𝑇ℎ𝑲0𝒒̂ℎ,

(29)

where

𝑲𝑐
0 ∶=

(

𝜫0
𝑘,𝐸∗

)𝑇

∫𝒙

𝒎𝑘𝒎𝑇
𝑘 d𝛺𝜫0

𝑘,𝐸∗, 𝑲𝑠
0 ∶= |𝐸|

(

𝑰 −𝜫0
𝑘,𝐸

)𝑇 (

𝑰 −𝜫0
𝑘,𝐸

)

, 𝑲0 ∶= 𝑲𝑐
0 +𝑲𝑠

0, (30)

𝑲𝑐
∇ ∶=

(

𝜫∇
𝑘,𝐸∗

)𝑇

∫𝒙

∇𝒎∇𝒎𝑇 d𝛺𝜫∇
𝑘,𝐸∗, 𝑲𝑠

∇ ∶=
(

𝑰 −𝜫∇
𝑘,𝐸

)𝑇 (

𝑰 −𝜫∇
𝑘,𝐸

)

, 𝑲∇ ∶= 𝑲𝑐
∇ +𝑲𝑠

∇. (31)

Next, the bilinear form for vector field 𝒖 and 𝒗 is considered. For example, the displacement can be written as the following
form

𝒖 = [𝑢𝑥, 𝑢𝑦]𝑇 , 𝛿𝒖 = [𝛿 𝑢𝑥, 𝛿 𝑢𝑦]𝑇 , (32)

then the following bilinear form for velocity 𝒗 can be calculated as

𝑚𝐸
ℎ (𝛿𝒗, 𝒗) = ∫𝒙

𝛿𝒗 ⋅ 𝒗 d𝛺 =
[

𝛿𝒗̂𝑇𝑥 𝛿𝒗̂𝑇𝑦
]

[

𝑲0

𝑲0

] [
𝒗̂𝑥
𝒗̂𝑦

]

= 𝛿𝒗̂𝑇𝑲0𝒗̂, 𝑲0 ∶=

[

𝑲0

𝑲0

]

. (33)

Using the Voigt notation (□̃) for strain

𝜺̃(𝒖) = 𝑨𝒅(𝒖), (34)

where

𝑨 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 0 0 1

0 1 1 0

⎤

⎥

⎥

⎥

⎦

, 𝒅(𝒖) =
[

𝜕 𝑢𝑥
𝜕 𝑥

𝜕 𝑢𝑥
𝜕 𝑦

𝜕 𝑢𝑦
𝜕 𝑥

𝜕 𝑢𝑦
𝜕 𝑦

]𝑇
, (35)

then

𝛱∇
𝑘,𝐸𝒗ℎ =

[

𝒎𝑇

𝒎𝑇

] [
𝜫∇

𝑘,𝐸∗

𝜫∇
𝑘,𝐸∗

] [
𝒖̂ℎ𝑥
𝒖̂ℎ𝑦

]

=

[

𝝓𝑇

𝝓𝑇

] [
𝜫∇

𝑘,𝐸

𝜫∇
𝑘,𝐸

] [
𝒖̂ℎ𝑥
𝒖̂ℎ𝑦

]

= 𝑴𝑇𝜫∇
∗ 𝒖̂ℎ.

(36)

Considering the definition before, the bilinear form for strain can be written as

𝑎𝐸ℎ (𝛿𝒖, 𝒖) = ∫𝒙

𝜀(𝛿𝒖) ∶ D ∶ 𝜀(𝒖) d𝛺 = ∫𝒙

𝒅(𝛿𝒖)𝑇𝑨𝑇 D̃𝑨𝒅(𝒖) d𝛺

= 𝛿𝒖̂𝑡
(

(

𝜫∇
∗
)𝑇

∫𝒙

∇𝑴 𝑨𝑇 D̃𝑨∇𝑴𝑇 d𝛺𝜫∇
∗ + 𝛾

[

𝑲𝑠
∇

𝑲𝑠
∇

])

𝒖̂

= 𝛿𝒖̂𝑡
(

𝑲𝑐
𝜀 + 𝛾𝑲𝑠

𝜀
)

𝒖̂ = 𝛿𝒖̂𝑡𝑲𝜀𝒖̂,

(37)

where 𝛾 in Eq. (37) is the stabilization parameter which can be selected as 𝛾 = 1
4𝑁𝐾

tr(𝑲𝑐
𝜀). The stabilization term can be chosen

in different ways, see the relevant work for details [4,24]. In general, for linear elastic problems, the choice of parameters in the
stabilization term has little effect on the results. For linear elastic problems, the matrix 𝑲𝑐 can also obtained based on 𝑲𝑐 . In actual
𝜀 ∇
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Fig. 2. First-order virtual element in space–time cylinder.

programming, the matrix can be calculated directly employing the form in Eq. (37). The matrices 𝑲0,𝑲0,𝑲𝜀 (Eqs. (33)–(37)) can
be used to calculate the stiffness matrix of the space–time dynamic problems.

3.4. Matrix form for the linear space–time elasticity

Since the space domain 𝛺 is divided into a set of non-overlapping polygons
{

 𝒙
ℎ
}

, the integrations of Eqs. (33)–(37) can be
calculated based on the Gaussian-Legendre quadrature. For the first-order scheme discussed in this work, a single-point integration
can be performed. The time interval [0, 𝑇 ] is divided into 𝑁𝑇 subintervals 𝑡𝑛 ∶= (𝑡𝑛, 𝑡𝑛+1) with knots 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁𝑇

= 𝑇 .
hen, the space–time element can be obtained as  = 𝒙 ×𝑡 (as shown in Fig. 2).

Under the current assumptions, the upper and lower surfaces (𝑏
𝒙 and 𝑡

𝒙 as shown in Fig. 2) of the space–time element have
he same shape, and therefore their shape functions are equal. If assumed a linear interpolation in the time dimension, the shape

function of our space–time element  has the form

𝝓 =

[

𝝓𝑏
𝒙
𝝓𝑡

(1)

𝝓𝑡
𝒙
𝝓𝑡

(2)

]

, (38)

where 𝝓𝑏
𝒙
= 𝝓𝑡

𝒙
=∶ 𝝓𝒙

is the shape function of our virtual element and 𝝓𝑡
∶= [𝜙𝑡

(1), 𝜙𝑡
(2)]𝑇 is the basic function of the

one-dimensional line element in time-direction. The shape function is
𝜙𝑡

(1) = 1 − 𝜉
2

, 𝜙𝑡
(2) = 1 + 𝜉

2
. (39)

The gradient of the tensor product shape function has the form as

∇𝒙𝝓 =

[

∇𝒙𝝓𝑏
𝒙
𝝓𝑡

(1)

∇𝒙𝝓𝑡
𝒙
𝝓𝑡

(2)

]

, ∇𝑡𝝓 =

[

𝝓𝑏
𝒙
∇𝑡𝝓𝑡

(1)

𝝓𝑡
𝒙
∇𝑡𝝓𝑡

(2)

]

(40)

The displacement 𝑼 for the space–time element is given by

𝑼ℎ =

[

𝝓𝑇


𝝓𝑇


]

𝑼̂ℎ = 𝜱𝑇
𝑼̂ℎ, (41)

where

𝜱𝑇
 ∶=

[

𝝓𝑇


𝝓𝑇


]

, 𝑼̂ℎ ∶=
[

𝒖̂𝑏𝑥 𝒖̂𝑡𝑥 𝒖̂𝑏𝑦 𝒖̂𝑡𝑦
]𝑇

. (42)

The same interpolation function are used for the velocity 𝒗.
Our discrete scheme is based on Eq. (18). For each space–time element , the element stiffness matrix 𝑲 has the block form as

𝑲 ∶=

[

𝑲𝒗𝒗 𝑲𝒗𝒖

𝑲𝒖𝒗 𝑲𝒖𝒖

]

(43)
7 
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According to the matrix calculated previously, the follow matrices can be obtained as

𝑲𝒗𝒗 = 𝜌−1 ∫

𝑡𝑛+1

𝑡𝑛
∫𝒙

(

𝜱 + 𝜃 ℎ∇𝑡𝜱
)

𝜱𝑇
 d𝛺 d𝑡

= 𝜌−1
⎡

⎢

⎢

⎣

∫ 𝑡𝑛+1
𝑡𝑛

𝝓𝑡
𝝓𝑇
𝑡

d𝑡 ⊗ ∫𝒙
𝝓𝒙

𝝓𝑇
𝒙

d𝛺

∫ 𝑡𝑛+1
𝑡𝑛

𝝓𝑡
𝝓𝑇
𝑡

d𝑡 ⊗ ∫𝒙
𝝓𝒙

𝝓𝑇
𝒙

d𝛺

⎤

⎥

⎥

⎦

+ 𝜌−1𝜃 ℎ
⎡

⎢

⎢

⎣

∫ 𝑡𝑛+1
𝑡𝑛

∇𝑡𝝓𝑡
𝝓𝑇
𝑡

d𝑡 ⊗ ∫𝒙
𝝓𝒙

𝝓𝑇
𝒙

d𝛺

∫ 𝑡𝑛+1
𝑡𝑛

∇𝑡𝝓𝑡
𝝓𝑇
𝑡

d𝑡 ⊗ ∫𝒙
𝝓𝒙

𝝓𝑇
𝒙

d𝛺

⎤

⎥

⎥

⎦

,

(44)

where ⊗ is the Kronecker product defined as 𝑨⊗ 𝑩 = (𝑎𝑖𝑗𝑩), 𝐴 = (𝑎𝑖𝑗 ). The integral term along the space domain in Eq. (44) was
calculated previously as

∫𝒙

𝝓𝒙
𝝓𝑇
𝒙

d𝛺 = 𝑲𝑐
0 +𝑲𝑠

0 =∶ 𝑲0, (45)

where 𝑲𝑐
0 and 𝑲𝑠

0 are defined in Eq. (30).
Since the Lagrange interpolation is selected to represent 𝝓𝑡

, the integral terms along the time direction can be calculated based
on the Gaussian integration

∫

𝑡𝑛+1

𝑡𝑛
𝝓𝑡

𝝓𝑇
𝑡

d𝑡 = ℎ
2 ∫

1

−1
𝝓𝑡

𝝓𝑇
𝑡

d𝜉 = ℎ
2

2
∑

𝑖=1
𝑤(𝑖)𝝓𝑡

(𝜉𝑖)𝝓𝑇
𝑡
(𝜉𝑖) =∶ 𝑳, (46)

∫

𝑡𝑛+1

𝑡𝑛
∇𝑡𝝓𝑡

𝝓𝑇
𝑡

d𝑡 = ℎ
2 ∫

1

−1
∇𝑡𝝓𝑡

𝝓𝑇
𝑡

d𝜉 = ℎ
2

2
∑

𝑖=1
𝑤(𝑖)∇𝑡𝝓𝑡

(𝜉𝑖)𝝓𝑇
𝑡
(𝜉𝑖) =∶ 𝑸, (47)

∫

𝑡𝑛+1

𝑡𝑛
𝝓𝑡

∇𝑡𝝓𝑇
𝑡

d𝑡 = ℎ
2 ∫

1

−1
𝝓𝑡

∇𝑡𝝓𝑇
𝑡

d𝜉 = ℎ
2

2
∑

𝑖=1
𝑤(𝑖)𝝓𝑡

(𝜉𝑖)∇𝑡𝝓𝑇
𝑡
(𝜉𝑖) =∶ 𝑹, (48)

∫

𝑡𝑛+1

𝑡𝑛
∇𝑡𝝓𝑡

∇𝑡𝝓𝑇
𝑡

d𝑡 = ℎ
2 ∫

1

−1
∇𝑡𝝓𝑡

∇𝑡𝝓𝑇
𝑡

d𝜉 = ℎ
2

2
∑

𝑖=1
𝑤(𝑖)∇𝑡𝝓𝑡

(𝜉𝑖)∇𝑡𝝓𝑇
𝑡
(𝜉𝑖) =∶ 𝑾 , (49)

where ℎ is the size of the virtual space–time element in the time direction, and 𝑤(𝑖) is the weight of the Gaussian integration.
If define any matrix 𝑲𝑎𝑛𝑦 as a block matrix as follows

𝑲𝑎𝑛𝑦 =

[

𝑲𝑎𝑛𝑦
I,I 𝑲𝑎𝑛𝑦

I,II

𝑲𝑎𝑛𝑦
II,I 𝑲𝑎𝑛𝑦

II,II

]

, (50)

the matrix 𝑲𝒗𝒗 can also obtained as

𝑲𝒗𝒗 = 𝜌−1
[

𝑳⊗𝑲0
I,I

𝑳⊗𝑲0
II,II

]

+ 𝜌−1𝜃 ℎ
[

𝑸⊗𝑲0
I,I

𝑸⊗𝑲0
II,II

]

, (51)

where 𝑲0 ∶= diag(𝑲0,𝑲0) as defined in Eq. (33).
Besides, the other stiffness matrices can be calculated as follows

𝑲𝒗𝒖 =

[

𝑹⊗𝑲0
I,I

𝑹⊗𝑲0
II,II

]

+ 𝜃 ℎ
[

𝑾 ⊗𝑲0
I,I

𝑾 ⊗𝑲0
II,II

]

, (52)

𝑲𝒖𝒗 =

[

𝑹⊗𝑲0
I,I

𝑹⊗𝑲0
II,II

]

+ 𝜃 ℎ
[

𝑾 ⊗𝑲0
I,I

𝑾 ⊗𝑲0
II,II

]

, (53)

𝑲𝒖𝒖 =

[

𝑳⊗𝑲𝜀
I,I 𝑳⊗𝑲𝜀

I,II

𝑳⊗𝑲𝜀
II,I 𝑳⊗𝑲𝜀

II,II

]

+ 𝜃 ℎ
[

𝑸⊗𝑲𝜀
I,I 𝑸⊗𝑲𝜀

I,II

𝑸⊗𝑲𝜀
II,I 𝑸⊗𝑲𝜀

II,II

]

, (54)

where 𝑲0 and 𝑲𝜀 are given in Eqs. (33) and (37). By assembling all elements and solving the systems of equation, the displacement
𝒖 at different times can be obtained directly without any time integration format. Science the tensor-product-in-time meshes is
selected, the calculation of stiffness matrix 𝑲 is very efficient (only need to compute some integrals

{

 𝒙
ℎ
}

of the elements in the
2D computational domain and then compute the overall stiffness matrix via the Kronecker product).

In order to clarify the analysis process, the flow chart is given, as shown in Fig. 3.

4. Finite element method for space–time dynamics

The form of Eqs. (51)–(54) provides an unified format, so it can be used to derive a finite element method with the tensor-product-
n-time meshes for the calculation of the space–time dynamics. Similar to the virtual element method, the calculation of matrix 𝑲0

nd 𝑲𝜀 is needed based on the finite element method for the 2D elements in the computational domain 𝛺, then the stiffness matrix
an be calculated based on Eqs. (51)–(54). In this work, the first-order quadrilateral element is choosed for discretization in the
pace domain. In the time direction, the two-node linear elements are used.
8 
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Fig. 3. Flowchart of solving dynamic problems in space–time format.

Table 1
The total degrees of freedom used by the space–time format for different time steps and different
meshes.

Time step Mesh 1 Mesh 2 Mesh 3
𝛥𝑡 = 0.2 31 824 40 800 42 840
𝛥𝑡 = 0.1 63 024 80 800 84 840

With the shape function 𝝓FEM of the finite element method, then the matrix 𝑲0 and 𝑲𝜀 can be calculated as

𝑲0 = ∫𝒙

[

𝝓FEM

𝝓FEM

] [
𝝓FEM

𝝓FEM

]𝑇

d𝛺 , (55)

𝑲𝜀 = ∫𝒙

𝑩𝑇 D̂𝑩 d𝛺 , (56)

where

𝑩 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝝓𝑇
FEM
𝜕 𝑥 𝟎𝑇

𝟎𝑇
𝜕𝝓𝑇

FEM
𝜕 𝑦

𝜕𝝓𝑇
FEM
𝜕 𝑦

𝜕𝝓𝑇
FEM
𝜕 𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (57)

Substituting Eqs. (56) and (57) into Eqs. (52) to (54), yields the stiffness matrix. Compared with the time integration format in
the traditional finite element method, this format has high computational efficiency and is simple to program. The relevant finite
element code can be found in https://github.com/Qinxiaoye/VEM-spcae-time-dynamic or https://www.vemhub.com/code.

5. Numerical examples

5.1. Transversal beam vibration

The purpose of the first example is to study the effect of the stability parameter 𝜃 on the results in the space–time format. As
hown in Fig. 4, a cantilever beam is considered with the shape as 𝐿×𝐻 = 5 × 1. The left side is fixed and two different vertical loads
𝑃 (𝑡) are applied on the right side (see Fig. 4). The first type is a constant load 𝑃 = 𝑃0. Another one is a half sine load 𝑃 = 𝑃0 sin(

𝜋 𝑡
5 )

or 𝑡 ≤ 5. The material parameters are assumed as 𝐸 = 200000, 𝜈 = 0.3.
Since the computational domain 𝛺 is discretized using the virtual element method, polygonal meshes (including non-convex

eshes) can be used as shown in Fig. 4. In this example, the finite element method is selected for comparison. In addition to using
the space–time approach, the Newmark method is also employed to solve the dynamics problem for comparison. For different time
steps and different meshes, the total degrees of freedom used in the space–time scheme are listed in Table 1.

Firstly, a constant load 𝑃 = 𝑃0 = 100 is assumed. To test the influence of the stabilization parameter 𝜃, the virtual element
ethod with mesh 1 (given in Fig. 4) is used. The density is chosen as 𝜌 = 100. The element length in the time direction is selected

s 𝛥𝑡 = 0.2, and the total calculation time is 10s. The reference solution is obtained by the Newmark time integration method with
 time step of 𝛥𝑡 = 0.01. For different stabilization parameters 𝜃 ∈ {0, 0.01, 0.1, 0.4, 0.8}, the 𝑦-direction displacements over time of
he lower right node are given in Fig. 5. Within the given range, the parameter 𝜃 has little effect on the result. Generally speaking,
9 
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Fig. 4. Transversal beam vibration, meshes and applied loads.

Fig. 5. Displacement over time response at point (5, 0).

a larger 𝜃 is more stable, but the solution will be damped, leading to energy lost and a reduced displacement. At the same time, a
smaller 𝜃 yields better results. Therefore, 𝜃 = 0.01 is chosen in the following analysis.

Since Newmark is not a strictly energy-preserving scheme, energy drift may occur in the Newmark integration method for long-
term integration. To test the space–time scheme of the virtual element method, the density of the beam is selected as 𝜌 = 10. The
element length in the time direction is selected as 𝛥𝑡 = 0.1, and the total calculation time is 10s. At the same time, the Newmark
method with 𝛥𝑡 = 0.1 is used in FEM and VEM to calculate the displacements. The 𝑦-direction displacements of the lower right node
are given in Fig. 6. It can be seen that compared to the Newmark method, the space–time scheme is free of phase error when using
the same time step.

In addition to constant loads, the time-varying load condition can also be introduced. As shown in Fig. 4, a half sine load is
assumed as 𝑃 = 𝑃0 sin(

𝜋 𝑡
5 ), 𝑃0 = 100 for 𝑡 ≤ 5 (𝑃0 = 0 for 𝑡 > 5). The element length in time direction is selected as 𝛥𝑡 = 0.1, and

the total calculation time is 10s. Very small time step (𝛥𝑡 = 0.01) is used in finite element method for comparison. The 𝑦-direction
displacements of the lower right node are depicted in Fig. 7. It can be seen that under the current circumstances, the space–time
VEM can still obtain sufficiently accurate results, while the results obtained by the Newmark method are more sensitive to the time
step requirements.

Computational efficiency is an important topic of our concern. For the same space–time framework, the VEM and FEM are
selected for comparison. For quadrilateral mesh, when the time step is 𝛥𝑡 = 0.2, VEM takes 2.46 s and FEM takes 2.57 s. When the
10 
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Fig. 6. Displacement over time response at point (5, 0), constant load.

Fig. 7. Displacement over time response at point (5, 0), time-varying load.

time step is 𝛥𝑡 = 0.1, VEM takes 5.33 s and FEM takes 5.76 s. It can be seen that the efficiency of the virtual element method is
slightly faster than that of the finite element method. Since the space–time scheme increases the number of degrees of freedom of
he problem, it accounts for a large proportion of the time spent on solving linear algebraic equations. This can be observed in both
EM and FEM. When the time step is 𝛥𝑡 = 0.1, VEM takes 3.503 s and FEM takes 4.13 s to solve the equation.

The contour plots of displacement 𝑢𝑦 and velocity 𝑣𝑦 obtained by space–time VEM with different meshes and different densities
are illustrated in Figs. 8 and 9, respectively.

5.2. Cook membrane problem

In this example, the Cook’s membrane is considered as shown in Fig. 10. The relevant dimensions are 𝐿 = 48, 𝐻1 = 44, 𝐻2 = 16.
The left side of the membrane is fixed and a constant vertical load 𝑞𝑦 = 100 is applied at the right side. In this example, two different
types of meshes including regular meshes and polygonal meshes are used (shown in Fig. 10). The material parameters are assumed
as 𝐸 = 200000, 𝜈 = 0.3 and 𝜌 = 10.

To test the convergence of the space–time VEM, a mesh refinement study with the element division of 2𝑁 × 2𝑁 for 𝑁 = 2, 3, 4
s given. For the space–time VEM, the mesh length in the time direction is selected as ℎ = 𝛥𝑡 = 0.2 and ℎ = 𝛥𝑡 = 0.1. Besides, the

Newmark method is also used for comparison. For different time steps and different meshes, the total degrees of freedom used in
the space–time scheme are listed in Table 2.
11 
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Fig. 8. Contour plots of displacement 𝑢𝑦 obtained by space–time VEM with different meshes, (a) 𝜌 = 100, (b) 𝜌 = 10.

Fig. 9. Contour plots of velocity 𝑣𝑦 obtained by space–time VEM with different meshes, (a) 𝜌 = 100, (b) 𝜌 = 10.

Fig. 10. Cook’s membrane problem, polygon mesh and regular mesh.
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Table 2
The total degrees of freedom used by the space–time format for different time steps and different meshes (poly is for polygon
mesh and quad is for quadrilateral/regular mesh).

Time step 𝑁 = 2 𝑁 = 3 𝑁 = 4
Poly Quad Poly Quad Poly Quad

𝛥𝑡 = 0.2 7752 5100 24 684 16 524 95 064 58 956
𝛥𝑡 = 0.1 15 352 10 100 48 884 32 724 188 264 116 756

Fig. 11. Convergence study of displacement 𝑢𝑦 for the top right corner over time response for Cook membrane problem, 𝑁 is the element division.

The associated convergence study of the maximum displacement 𝑢𝑦 for the top right corner is given in Fig. 11. It can be observed
that as the mesh size decreases, the results obtained by space–time VEM converge to the reference solution. For 𝑁 = 4, the
displacements agree very well with the reference solution even for 𝛥𝑡 = 0.2.

The contour plots of displacement in the 𝑦 direction and the von Mises stress for the space–time domain (𝑁 = 4, 𝛥𝑡 = 0.2) are
iven in Fig. 12. For 𝑁 = 4, the contour plots of the von Mises stress obtained by space–time VEM for different meshes are depicted

in Fig. 13.

5.3. Center oblique crack plate

In this example, a rectangular plate with an arbitrarily oriented central crack is considered as illustrated in Fig. 14. The
geometrical parameters of the plate are 2 × 𝐻 = 40, 2 × 𝐿 = 20, and the crack length is 2𝑎 = 5. The uniform traction 𝑃 = 100
is given on the top and the bottom of the plate. The material parameters are assumed as 𝐸 = 200000, 𝜈 = 0.3, 𝜌 = 10. The central
crack can be rotated to an arbitrary angle 𝛼 and in this work, different angles are selected as 𝛼 = 0◦, 20◦, 40◦, 60◦, 80◦. This is an
advantage of VEM since the element at interfaces can have arbitrary number of nodes. Thus the rotated inner part of the mesh in
Fig. 14 yields always a continuous discretization.
13 
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Fig. 12. Contour plots of the displacement 𝑢𝑦 and von Mises stress for 𝑁 = 4 and 𝛥𝑡 = 0.2 (scaling factor is 10).

Fig. 13. Contour plots of the stresses for different meshes at 𝑡 = 9 (scaling factor is 10), (a) polygonal mesh, (b) regular mesh.

Table 3
The total degrees of freedom used by the space–time format for different meshes (different
angles).

Angle 𝛼 𝛼 = 0 𝛼 = 20 𝛼 = 40 𝛼 = 60 𝛼 = 80
d.o.f. 372 096 372 912 374 136 372 504 373 320

The space–time scheme is used and the size of the mesh in the time direction is selected as 𝛥𝑡 = 0.02. Again, the Newmark
method with the time step 𝛥𝑡 = 0.01 is used for comparison. For different angles, the total number of nodes are different. The total
degrees of freedom for different angles are listed in Table 3. For different angles, the displacements 𝑢𝑦 over time at the top right
corner are illustrated in Fig. 15. The displacements obtained by the space–time VEM (𝛥𝑡 = 0.02) agree well with the displacements
obtained by the Newmark method (𝛥𝑡 = 0.01). The contour plots of von Mises stresses and displacements 𝑢𝑦 are depicted in Figs. 16
and 17 for different angles. The von Mises stresses at 𝑡 = 0.8 for different 𝛼 are illustrated in Fig. 18.
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Fig. 14. Geometry and meshes of a rectangular plate with an arbitrarily oriented central crack.

Fig. 15. Displacement 𝑢𝑦 for the top right corner over time response for different 𝛼.

Fig. 16. Contour plots of von Mises stresses over time response for different 𝛼.
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Fig. 17. Displacements 𝑢𝑦 over time response for different 𝛼.

Fig. 18. Contour plots of von Mises stresses at 𝑡 = 0.8 for different 𝛼.

5.4. Arbitrary geometry considering body force

For the last example, a two-dimensional animal-shaped subjected to volume forces is considered. The geometry and polygonal
VEM mesh are shown in Fig. 19. In this work, downward and rightward body forces 𝑔 = 10 are considered. The material parameters
are assumed as 𝐸 = 200000, 𝜈 = 0.3, 𝜌 = 50.

The space–time virtual element method is used with the mesh size ℎ = 𝛥𝑡 = 2 in time direction. The total calculation time is
𝑡 = 80. The total degrees of freedom is 222 876. For the space–time domain 𝛺 × 𝐼 , the von Mises stresses for two different body
forces are given in Fig. 20. Besides, the von Mises stresses for two different body forces at 𝑡 = 80 are illustrated in Fig. 21.

6. Conclusion

In this work, a space–time virtual element method is presented for the discretization of two-dimensional elastodynamics based on
Hamilton’s principle of stationary action. In our space–time scheme, the virtual element method is used in the space dimension and
the finite element method is used in the time dimension. Compared with other space–time formulation, the ‘‘structured’’ numerical
approach avoids the introduction of additional degrees of freedom in the time direction and simplifies the calculations. Besides,
arbitrary polygonal elements can be used in the space dimension, thus enhancing the flexibility of meshing. The results undering
the advantages of high accuracy and stability for the new space–time formulation. For large-scale problems, the computational
efficiency may be slow, so parallel technology and adaptive mesh are needed. The space–time scheme will be extended to nonlinear
problems in the future. The virtual element method code and finite element method code involved in this work can be found in
https://github.com/Qinxiaoye/VEM-spcae-time-dynamic.
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Fig. 19. Geometry and mesh of the animal shape plates.

Fig. 20. Contour plots of von Mises stresses for different body force.

Fig. 21. Contour plots of von Mises stresses for different body force at 𝑡 = 80.
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