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A B S T R A C T

In this work, we develop a general high-order virtual element method for three-dimensional
linear and nonlinear elastic problems. Applications of the virtual element method (VEM) in
three-dimensional mechanics include linear elasticity problems, finite elastic strain problems,
finite deformation plasticity problems, etc. But besides linear elastic problems, see e.g. Visinoni,
2024, the numerical schemes were all based on a first-order approximation of the displacement.
We derive three-dimensional elastic problems, including linear elastic problems and for the
first time hyperelastic problems. Similar to previous work, we discuss the calculation method
of three-dimensional high-order projection operators of vector fields and calculate the tangent
stiffness matrix of elastic problems according to the variational scheme. Since traditional VEM
requires the use of stabilization terms to ensure the correctness of the rank of the stiffness
matrix, we give suggestions for the selection of stabilization terms for high-order virtual element
methods in both linear and nonlinear elasticity. Finally, we illustrate the accuracy, convergence,
and stability of the high-order VEM for elastic problems by means of some classic elastic and
hyperelastic examples. In addition, we also apply the developed methodology to some complex
and difficult problems which illustrate the adaptability of the method to engineering problems.

1. Introduction

Numerical simulation of elastic structures has long been a cornerstone of engineering and scientific research, allowing the
prediction of structural deformations under various loading conditions as well as stress calculations. Over the last 50 years, significant
progress has been made in computational methods aimed at accurately capturing the complex behavior of elastic materials, such
as finite element methods, boundary element methods, meshless methods, etc. To improve the analysis capabilities of complex
geometries, numerical methods based on polygon or polyhedral elements [1–6] have gained more attention. But without exception,
these methods have great difficulties when processing complex polygonal elements (such as non-convex polygons or arbitrary
polygons) or three-dimensional polyhedral elements. The virtual element method (VEM) introduced in [7,8] is a generalized finite
element method that can be applied to polygonal or polyhedral meshes, also including non-convex and very distorted elements [9].
The basic VEM theory and code can be found in the Refs. [10–12].

In addition to the classic Poisson’s equation, the virtual element method has been widely used in various mechanics and
engineering problems. In the domain of linear elastic mechanics, researchers have developed different virtual element methods
formats for two-dimensional and three-dimensional elastic mechanics problems [12–17]. In addition, the application of the
virtual element method to nonlinear problems has also received a lot of attention and research. Current applications include
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hyperelastic materials at finite deformations [18–21], contact problems [22–25] and finite elastoplastic deformations [26–28].
Besides, the VEM has been extended to the applications of topology optimization [29,30], elastodynamics problems [31–34]
and phase field fracture [35,36]. Recently, the VEM was also presented for propagating uncertainty in linear elastic stochastic
problems [37]. However, upon the author’s analysis, it is evident that the virtual element method has predominantly been applied
to two-dimensional problems, including high-order forms [15,38,39] and 2D nonlinear problems [18,21,40–42].

Inevitably, a large number of engineering and scientific problems are often three-dimensional problems. Using the virtual element
ethod in 3D complex engineering problems will reduce the difficulty of pre-processing. Up to now, the three-dimensional virtual

lement method has also been developed for linear elastic problems and nonlinear problems, but mainly for low order(𝑘 = 1) virtual
lements, see e.g [14,16,27–29]. With the use of automatic differentiation tools, the virtual element method has been applied to
wider range of three-dimensional problems. For details, see the latest books in VEM [9]. However, most current applications in

hree-dimensional mechanics are all based on the first-order virtual element method. The first-order virtual element method has very
ood computational efficiency (because only a single-point integration is required). Given the appropriate technology, for example,
he Taylor–Hood type virtual element formulations for incompressible strains [43], the first-order virtual element method can also
chieve acceptable results. Besides, a simple and effective gradient recovery scheme has been proposed to get a more accurate
isplacement gradient [44]. However, due to volume locking, first-order VEM requires a mixed approach to obtain accurate results,
ee [28]. However, the low-order mixed method cannot alleviate locking in bending situations. This can only be overcome by
igher-order schemes. (the conventional finite element method also has the same problem, but the volume-locking phenomenon
n higher-order FEM will be greatly improved). Therefore, in this work, we will develop a high-order virtual element method to
mprove accuracy. For Poisson’s equation (as well as the diffusion–reaction problem), high-order three-dimensional virtual element
ethods have been proposed with a high-order polynomial degree (up to 𝑘 = 10) [45–47]. But so far, there are only a few high-order

three-dimensional virtual element formulations for linear elastic problems, see [48]. But to the author’s knowledge, no higher-order
virtual element formulation exists for finite strain problems. In this paper, we will develop a three-dimensional high-order virtual
element method for three-dimensional linear and nonlinear elasticity.

The main idea of the VEM is to split the variable 𝒖 into a projection 𝛱𝒖 and a remainder, which results in a stiffness matrix
equiring an additional stabilization term. The selection of appropriate stabilization terms and associated parameters is an important
opic, especially for nonlinear problems. Several techniques for the stabilization of virtual elements have been developed, e.g. [13–
5] for linear elasticity, [18] for hyperelasticity. Generally speaking, there are often one or more parameters (called stabilization
arameters) in the stabilization term. It is often found that smaller stabilization parameters can lead to better results, but also cause
nstability (leads to non-convergence in nonlinear calculations) at the same time. Another technique named energy stabilization (non-
inear stabilization) is adopted in [19,21] for compressible and incompressible finite deformations. However, this format requires the
ntroduction of the shape function of the triangular or tetrahedral element in the finite element, so this will bring great inconvenience
o the high-order virtual element method, especially for three-dimensional elements. To avoid the impact of stabilization terms on the
esults of the problem (especially for nonlinear problems), the stabilization-free virtual element method (SFVEM) [49–52] has been
roposed and developed for 2D and 3D linear [53,54] and nonlinear problems [55]. The core idea of this SFVEM is to use high-order
olynomials to approximate gradients or strains. However, due to the need to calculate the integral of higher-order polynomials,
he required amount of calculations and calculation time is relatively large and thus SFVEM scheme will not be applied here. For
igh-order three-dimensional VEMs, the choice of stabilization terms is discussed in [46], but only for linear Poisson’s equations. In
his work, we will further discuss the parameter selection of the stabilization term of the second-order VEM in linear and nonlinear
lasticity.

The paper is divided into the following parts. The basic equations of elasticity are reviewed in Section 2. Then, the function spaces
nd projection operators for the high-order virtual element method will be given in Section 3. Besides, the specific format of the
igh-order virtual element method for solving linear and nonlinear elastic mechanics problems can be found in Section 4. Section 5
ives specific application examples of the high-order virtual element method in linear elasticity and hyperelasticity problems. The
onclusion and discussion will be provided in Section 6.

. Equations of elastic mechanics

In this section, we will review the continuum-based description of the solid. We assume that a boundary domain 𝛺 in R3 with
ipschitz boundary 𝛤 is occupied by a homogeneous isotropic elastic material. The motion of the body

𝝋 ∶ 𝛺0 → 𝛺 = 𝝋(𝛺0) (1)

𝑿 ↦ 𝒙 = 𝝋(𝑿, 𝑡),∀𝑿 ∈ 𝛺0, 𝑡 ≥ 0 (2)

aps the material coordinate 𝑿 (initial configuration 𝛺0) to 𝒙 (current configuration 𝛺), so that the displacement is 𝒖 = 𝒙 − 𝑿.
Since 𝝋 is smooth and invertible, we can also define the deformation gradient

𝑭 = ∇𝑿𝝋 = 𝑰 + ∇𝑿𝒖, (3)

where ∇𝑿 represents the displacement gradient to the initial coordinates, 𝑰 is the second-order unity tensor. The determinant of
the deformation gradient is given as 𝐽 = det(𝑭 ) > 0.
2
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The small strain deformation tensor is defined as a linear function of the displacement gradient ∇𝒖 by

𝜺(𝒖) = ∇𝑠𝒖 = 1
2
(

∇𝒖 + ∇𝒖𝑇
)

. (4)

In the finite strain case, the Green–Lagrange strain tensor can be introduced as

𝑬 = 1
2
(𝑪 − 𝑰), (5)

where 𝑪 is the right Cauchy–Green deformation tensor

𝑪 = 𝑭 𝑇 ⋅ 𝑭 . (6)

In the case of static problems, the governing equation of the solid in the current configuration 𝛺 is

∇𝒙 ⋅ 𝝈 + 𝒃 = 𝟎, (7)

here 𝒃 is the body force and 𝝈 is the (symmetric) Cauchy stress tensor, ∇𝒙⋅ is the current configuration divergence operator. Using
he deformation map, the governing Eq. (7) can be pulled back to the initial configuration

∇𝑿 ⋅ 𝑷 + 𝒃0 = 𝟎, (8)

here 𝑷 = 𝐽𝝈𝑭 −𝑇 is the first Piola–Kirchhoff stress tensor, 𝒃0 = 𝒃(𝝋(𝑿)) is the body force in the initial configuration. To construct
work conjugated formulation, the second Piola–Kirchhoff stress tensor 𝑺 is

𝑺 = 𝑭 −1 ⋅ 𝑷 = 𝐽𝑭 −1 ⋅ 𝝈 ⋅ 𝑭 −𝑇 . (9)

The elastic behavior of a deformable body can be specified in terms of a strain energy density function 𝛹 . In the linear cases,
e compute the Cauchy stress tensor as

𝝈 = 𝜕𝛹
𝜕𝜺

. (10)

where 𝛹 is a homogeneous isotropic linear elastic material as

𝛹 (𝜺) = 𝜆
2
(tr (𝜺))2 + 𝜇tr

(

𝜺2
)

, (11)

where 𝜆 and 𝜇 are the Lame constants, which can be expressed in terms of Yong’s modulus 𝐸 and Poisson’s ratio 𝜈 as

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

, 𝜈 = 𝐸
1(1 + 𝜈)

. (12)

Based on Eq. (10), the Cauchy stress tensor under small strain assumption has the formulation as

𝝈 = 𝜕𝛹
𝜕𝜺

= 𝜆tr(𝜺)𝑰 + 2𝜇𝜺. (13)

For a homogeneous compressible isotropic hyperelastic material, the neo-Hookean hyperelastic model can be selected with the
strain energy function as

𝛹 =
𝜇
2
(tr(𝑪) − 3) − 𝜇 ln 𝐽 + 𝜆

2
(ln 𝐽 )2. (14)

Then the second Piola–Kirchhoff stress tensor can be obtained as (note 𝜕𝐽
𝜕𝑪 = 1

2𝐽𝑪
−1)

𝑺 = 2 𝜕𝛹
𝜕𝑪

= 𝜇(𝑰 − 𝑪−1) + 𝜆 (ln 𝐽 )𝑪−1. (15)

Lastly, the potential energy can be written as

𝑈 (𝒖) = ∫𝛺

[

𝛹 (𝒖) − 𝒃0 ⋅ 𝒖
]

d𝛺 − ∫𝛤𝑁
�̄� ⋅ 𝒖 d𝛤 , (16)

where 𝛤𝑁 is the Neumann boundary and �̄� is the prescribed surface traction.

3. High-order virtual element method

Next, we will describe in detail the discretization procedure for the high-order virtual element method format for small and finite
strain elastic problems.

3.1. Notation

A major feature of the virtual element method is that the method allows the use of arbitrary polygons or polyhedra for model
discretization. A complex geometry and its polyhedral mesh discretization process ℎ = {𝛺ℎ}ℎ is shown in Fig. 1. To avoid confusion,
in the following part of the paper, 𝐸 will denote a polyhedral element, while faces, edges and vertices will be indicated by 𝑓 , 𝑒, and

respectively. Besides, for a given polyhedral element, some parameters are given as: volume |𝐸|, barycenter 𝒙𝐸 = (𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸 )𝑇 ,
nd diameter ℎ .
3
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Fig. 1. Polyhedral mesh discretization of complex geometries.

Fig. 2. Polyhedral element and its polygonal surfaces.

For a given nonnegative integer 𝑘, 𝑘(𝐸) denotes the space of polynomials of order 𝑘 and 𝑘(𝐸) denotes the scaled monomials
as

𝑘(𝐸) ∶=
{

𝑚𝛼 =
(

𝒙 − 𝒙𝐸
ℎ𝐸

)𝜶
for 𝜶 ∈ N𝑑 with |𝜶| ≤ 𝑘

}

, (17)

where 𝜶 = (𝛼1, 𝛼2, 𝛼3) is a multiindex and 𝒙𝜶 ∶= 𝑥𝛼11 ⋯ 𝑥𝛼𝑑1 .
Different from Poisson’s equation, the governing equations of elastic mechanics problems are vector field equations. We use the

bold symbols, such as 𝒖, 𝒗, 1,  𝑘, 𝑘 for the vector-valued functions or spaces.

3.2. Virtual element on polyhedron for vector-valued problems

Let 𝛺ℎ be a partition of 𝛺 into non-overlapping polyhedrons. For each element 𝐸 ∈ 𝛺ℎ, the boundary 𝐹 ∈ 𝑛 is a polygon
embedded in R3, which can be treated as a two-dimensional local element using local coordinates (𝜉𝐹 , 𝜂𝐹 ) as shown in Fig. 2. In
the following, we use |𝐹 | to represent the area of the polygon element and the subscript 𝐹 to indicate the locally defined symbols.

We can follow [45] to define our function spaces. For the local vector-valued virtual element function space, we first introduce
the elemental boundary space (note that 𝐹 ∈ 𝜕𝐸 is a 2D polygon):

(𝜕𝐸) ∶=
{

𝒗 ∈ 𝑪0(𝜕𝐸) ∶ 𝒗|𝐹 ∈ 𝑓
𝑘 (𝐹 ),∀𝐹 ∈ 𝜕𝐸

}

, (18)

where 𝑓
𝑘 (𝐹 ) is the two-dimensional virtual element space on 𝐹 . The definition of the function space for boundary elements can be

found in e.g. [7,8], and is also given in Appendix A, see Eq. (A.5).
4
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Fig. 3. Local degrees of freedom for 𝑘 = 2.

Once the boundary space is defined, the preliminary local virtual element space on 𝐸 can be defined as

̃𝑘(𝐸) ∶=
{

𝒗 ∈ 1 ∶ 𝒗|𝜕𝐸 ∈ (𝜕𝐸), 𝛥𝒖 ∈
(

 𝑘−2(𝐸)
)3
}

. (19)

Based on the definition of the boundary space and the preliminary local virtual element space, the associated degrees of freedom
are given as

• the values of 𝒗𝑝 at the vertices of 𝐸;
• the values of the 𝑘 − 1 internal Gauss–Lobatto nodes on each edge 𝑒 of polyhedron 𝐸;
• moments on faces 𝐹 of polyhedron 𝐸 up to degree 𝑘 − 2

1
|𝐹 |

∫𝐹
𝒗𝒑𝑓𝑘−2 d𝛺𝐹 , ∀𝒑𝑓𝑘−2 ∈  𝑘−2(𝐹 ), ∀face𝐹 ∈ 𝜕𝐸, (20)

• bulk moments up to degree 𝑘 − 2

1
|𝐸|

∫𝐸
𝒗𝒑𝑘−2 d𝛺, ∀𝒑𝑘−2 ∈  𝑘−2(𝐸). (21)

For a given polyhedral element, the local degrees of freedom for 𝑘 = 2 are depicted in Fig. 3.
The basic principle of the virtual element method is to define a projection 𝛱∇

𝑘 from the virtual element space to the polynomial
space. The projection operator can be obtained based on the degrees of freedom of the element and the basis functions of the edges
of the polygon (polyhedron) (interpolation functions for line elements are known).

As discussed in [9,13,15], for linear and nonlinear elastic problems, the displacement 𝒖ℎ can be split as 𝛱∇
𝑘 𝒖ℎ and a remainder

𝒖ℎ −𝛱∇
𝑘 𝒖ℎ as

𝒖ℎ = 𝛱∇
𝑘 𝒖ℎ +

(

𝒖ℎ −𝛱∇
𝑘 𝒖ℎ

)

, (22)

where the vector projection operator 𝛱∇
𝑘

𝛱∇
𝑘 ∶ ̃𝑘(𝐸) →

(

 𝑘(𝐸)
)3 , 𝒗 ↦ 𝛱∇

𝑘 𝒗, (23)

follows from

⎧

⎪

⎨

⎪

⎩

∫𝐸
∇𝛱∇

𝑘 𝒗 ⋅ ∇𝒑 d𝛺 = ∫𝐸
∇𝒗 ⋅ ∇𝒑 d𝛺, 𝒑 ∈ 𝑘(𝐸)

∫𝐸
𝛱∇

𝑘 𝒗 d𝛺 = ∫𝐸
𝒗 d𝛺

. (24)

Then we define the local virtual space as

𝑘(𝐸) =
{

𝒗 ∈ ̃𝑘(𝐸) ∶ 𝒗 ⋅ 𝒒 d𝛺 d𝛺 =
(

𝛱∇𝒗
)

⋅ 𝒒 d𝛺,∀𝒒 ∈  𝑘∖ 𝑘−2

}

. (25)
5
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Inserting the basis functions 𝝓 for the VEM space 𝑘(𝐸) and basis functions 𝒎 for the polynomial space  𝑘(𝐸) in Eq. (24) yields

⎧

⎪

⎨

⎪

⎩

∫𝐸
∇𝒎 ⋅ ∇𝛱∇

𝑘 𝝓
𝑇 d𝛺 = ∫𝐸

∇𝒎 ⋅ ∇𝝓𝑇 d𝛺

∫𝐸
𝛱∇

𝑘 𝝓
𝑇 d𝛺 = ∫𝐸

𝝓𝑇 d𝛺
, (26)

where the projection operator 𝛱∇
𝑘 can be expanded in a matrix form as

𝛱∇
𝑘 𝝓

𝑇 = 𝒎𝑇𝜫∇
𝑘∗ = 𝝓𝑇𝜫∇

𝑘 , (27)

ere 𝜫∇
𝑘∗ is matrix formulation of the Ritz projection operator.

Substituting Eq. (27) into Eq. (26) leads to the matrix form

⎧

⎪

⎨

⎪

⎩

𝑮𝜫∇
𝑘∗ = 𝑩

∫𝐸
𝒎𝑇 d𝛺𝜫∇

𝑘∗ = ∫𝐸
𝝓𝑇 d𝛺

, (28)

here

𝑮 = ∫𝐸
∇𝒎 ⋅ ∇𝒎𝑇 d𝛺, 𝑩 = ∫𝐸

∇𝒎 ⋅ ∇𝝓𝑇 d𝛺. (29)

Considering the Gaussian divergence theorem, the matrix 𝑩 can be calculated by

𝑩 = ∫𝐸
∇𝒎 ⋅ ∇𝝓𝑇 d𝛺

= −∫𝐸
𝛥𝒎 ⋅ 𝝓𝑇 d𝛺 +

∑

𝐹⊂𝜕𝐸
∫𝐹

(

∇𝒎 ⋅ 𝒏𝐹
)

𝝓𝑇 d𝛤

= −𝑰1 + 𝑰2,

(30)

here

𝑰1 = ∫𝐸
𝛥𝒎 ⋅ 𝝓𝑇 d𝛺, 𝑰2 =

∑

𝐹⊂𝜕𝐸
∫𝐹

(

∇𝒎 ⋅ 𝒏𝐹
)

𝝓𝑇 d𝛤 . (31)

Since 𝛥𝒎 ∈ 𝑘−2 in 𝑰1, so that the integral can be computed exactly without knowing 𝒗 in the interior of 𝐸, see Eq. (21). For
valuation of the second term 𝑰2, we define a local coordinate system for each face 𝐹 (as shown in Fig. 2) and the elliptic projection
∇
𝑘,𝐹 on the polygonal face can be obtained as

𝑰2 =
∑

𝐹⊂𝜕𝐸
∫𝐹

(

∇𝒎 ⋅ 𝒏𝐹
)

𝝓𝑇 d𝛤

=
∑

𝐹⊂𝜕𝐸
∫𝐹

(

∇𝒎 ⋅ 𝒏𝐹
)

𝛱∇
𝑘,𝐹𝝓

𝑇 d𝛤 =
∑

𝐹⊂𝜕𝐸
∫𝐹

(

∇𝒎 ⋅ 𝒏𝐹
)

𝒎𝑇
𝐹 d𝛤𝜫∇

𝑘,𝐹 ,
(32)

here 𝜫∇
𝑘,𝐹 is the local projection matrix for face 𝐹 under the local coordinate as shown in Fig. 2. The calculation process of

rojection matrix 𝜫∇
𝑘,𝐹 is similar to 𝜫∇

𝑘 in Eq. (28) and detailed in Appendix A. The integral in Eq. (32) can be calculated by
ividing the polygon into triangles and utilizing the Gauss numerical integral method. Lastly, the matrix 𝑩 can be calculated by

𝑩 = −𝑰1 + 𝑰2. (33)

Compared with matrix 𝑩, the calculation of matrix 𝑮 is relatively simple. One way is to divide the polyhedron into tetrahedrons
nd then perform integration; another way is to define the matrix 𝑫 as follows:

(𝑫)𝑖𝛼 ∶= dof𝑖(𝒎𝛼), (34)

here dof𝑖(𝒎𝛼) is the 𝑖th degree of freedom of 𝒎𝛼 as given in Eqs. (20) and (21). Then, the matrix 𝑮 can be calculated by

𝑮 = 𝑩𝑫. (35)

For any given polyhedral element that meets the geometric requirements [56], the matrices 𝑩 and 𝑮 can be calculated and the
itz projection matrix 𝜫∇

𝑘∗ is obtained based on Eq. (28) and the projection matrix 𝜫∇
𝑘 follows as

𝜫∇
𝑘 = 𝑫𝜫∇

𝑘∗. (36)

. Construction of the virtual element for elasticity

In the previous section, we derived the calculation process of projection operators for arbitrary order 3D VEM. For hyperelastic
inite strain problems, we can perform calculations in the initial configuration. The related discretization process is similar to
onlinear finite element literature, see [57]. In addition, automatic differentiation is another powerful tool to obtain the residual and
angent stiffness matrix, see [58]. Next, we will briefly describe the specific format of the tangent stiffness matrix. The associated
6
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4.1. Hyperelasticity

Considering the internal virtual work in a Lagrangian form as

 = ∫𝑉0
𝛿𝑬 ∶ 𝑺 d𝑉0, (37)

the linearization of the virtual work is obtained as

𝛥 = ∫𝑉0
𝛿𝑬 ∶ 𝛥𝑺 d𝑉0 + ∫𝑉0

𝛥 (𝛿𝑬) ∶ 𝑺 d𝑉0. (38)

Utilization Voigt notation and considering the definition of the Green–Lagrange strain tensor 𝑬 and 𝛥�̂� = ̂ ∶ 𝛥�̂�, the
linearization of the virtual work follows as

𝛥 = ∫𝑉0
𝛿�̂�𝑇

⋅ ̂ ⋅ 𝛥�̂� d𝑉0 + ∫𝑉0
𝛿𝜽𝑇 ⋅  ⋅ 𝛥𝜽 d𝑉0

= ∫𝑉0
𝛿𝜽𝑇 ⋅

(

𝑨𝑇 ⋅ ̂ ⋅𝑨 + 
)

⋅ 𝛥𝜽 d𝑉0,
(39)

where

𝜽 =
[

𝜕𝑢
𝜕𝑋

𝜕𝑢
𝜕𝑌

𝜕𝑢
𝜕𝑍

𝜕𝑣
𝜕𝑋

𝜕𝑣
𝜕𝑌

𝜕𝑣
𝜕𝑍

𝜕𝑤
𝜕𝑋

𝜕𝑤
𝜕𝑌

𝜕𝑤
𝜕𝑍

]𝑇
, (40)

and �̂� = 𝑨 ⋅ 𝜽, 𝛿�̂� = 𝑨 ⋅ 𝛿𝜽, 𝛥�̂� = 𝑨 ⋅ 𝛥𝜽. Besides, the constitutive tensor ̂ can be obtained based on the strain energy density
function 𝛹 , see Eqs. (11) and (14). The specific format of tensor  and 𝑨 can be found in Appendix B.

Considering the projection matrix 𝜫∇
𝑘 we solved from Eqs. (28) and (36) for any given 3D polyhedral element, we have

𝛥𝜽 ≐ ∇𝝓𝑇 ⋅𝜫∇
𝑘 ⋅ 𝛥𝑼 = ∇𝒎𝑇 ⋅𝜫∇

𝑘∗ ⋅ 𝛥𝑼 , (41)

where 𝑼 is a vector composed of the degrees of freedom in the polyhedral element and 𝛥𝑼 is the increment. We should note that
Eq. (41) is not strictly equal and we use ≐ since only the projection part is considered.

As shown in Eq. (22) and some previous references, the displacement is divided into a projection part and a remainder, so
additional stabilization terms are needed in the VEM to ensure the correct rank of the tangent stiffness matrix. Considering Eq. (22)
in Eq. (41), we have

𝛥𝜽 = ∇𝝓𝑇 ⋅𝜫∇
𝑘 ⋅ 𝛥𝑼 +

(

𝛥𝜽 − ∇𝝓𝑇 ⋅𝜫∇
𝑘 ⋅ 𝛥𝑼

)

= ∇𝒎𝑇 ⋅𝜫∇
𝑘∗ ⋅ 𝛥𝑼 + ∇𝝓𝑇 ⋅

(

𝑰𝐾 −𝜫∇
𝑘
)

⋅ 𝛥𝑼 ,
(42)

where 𝑰𝐾 is an identity matrix that has the same size as the 𝜫∇
𝑘 . Substituting Eq. (42) into Eq. (39), the linearization of the virtual

work becomes

𝛥 =𝛿𝑼𝑇 ⋅
(

𝜫∇
𝑘∗
)𝑇

⋅ ∫𝑉0
∇𝒎

(

𝑨𝑇 ⋅ ̂ ⋅𝑨 + 
)

∇𝒎𝑇 d𝑉0 ⋅𝜫∇
𝑘∗ ⋅ 𝛥𝑼

+𝛿𝑼𝑇 ⋅
(

𝑰𝐾 −𝜫∇
𝑘
)𝑇

⋅ ∫𝑉0
∇𝝓

(

𝑨𝑇 ⋅ ̂ ⋅𝑨 + 
)

∇𝝓𝑇 d𝑉0 ⋅
(

𝑰𝐾 −𝜫∇
𝑘
)

⋅ 𝛥𝑼 .
(43)

Based on Eq. (43), the element tangent stiffness matrix can be obtained as

𝑲𝑁𝐿 = 𝑲𝑁𝐿
𝑐 +𝑲𝑁𝐿

𝑠 , (44)

where 𝑲𝑁𝐿
𝑠 is the consistency term and 𝑲𝑁𝐿

𝑠 is the stabilization term. The specific form can be derived from Eq. (43) as

𝑲𝑁𝐿
𝑐 =

(

𝜫∇
𝑘∗
)𝑇

⋅ ∫𝑉0
∇𝒎

(

𝑨𝑇 ⋅ ̂ ⋅𝑨 + 
)

∇𝒎𝑇 d𝑉0 ⋅𝜫∇
𝑘∗, (45)

and

𝑲𝑁𝐿
𝑠 =

(

𝑰𝐾 −𝜫∇
𝑘
)𝑇

⋅ ∫𝑉0
∇𝝓

(

𝑨𝑇 ⋅ ̂ ⋅𝑨 + 
)

∇𝝓𝑇 d𝑉0 ⋅
(

𝑰𝐾 −𝜫∇
𝑘
)

. (46)

Considering ∫𝑉0 ∇𝜙∇𝜙
𝑇 ≈ (1) (under suitable mesh regularity assumptions), the stabilization matrix can be approximated as

𝑲𝑁𝐿
𝑠 = 𝛼

(

𝑰𝐾 −𝜫∇
𝑘
)𝑇 (

𝑰𝐾 −𝜫∇
𝑘
)

, (47)

here 𝛼 is a stabilization parameter, which depends on different material constants (also nonlinear materials).
There are some discussions on the stabilization parameter 𝛼 for hyperelastic problems in first-order VEM, see [9,18,21,59]. As

escribed in Ref. [18], the authors provided two different stabilization techniques, including norm-based stabilization and trace-
ased stabilization. In this work, for hyperelastic problems, considering the trace of constitutive tangent, the stabilization parameter
for second-order 3D VEM is selected as

𝛼 = 1 tr
(

̂
)

= 4 tr( 𝜕2𝛹 ), 𝑑 = 3, (48)
7
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and thus depends on the deformation state. Of course, there are many other ways to choose the stabilization parameters, such as
non-linear stabilization in [9,21,26].

The internal force is obtained based on Eq. (37):

𝛿𝑼𝑇 ⋅ 𝑭 int = ∫𝑉0
𝛿�̂�𝑇

⋅ �̂� d𝑉0 = ∫𝑉0
(𝑨 ⋅ 𝛿𝜽)𝑇 ⋅ �̂� d𝑉0. (49)

With Eq. (22), the internal force can be formulated as

𝑭 int =
(

𝜫∇
𝑘∗
)𝑇

⋅ ∫𝑉0
∇𝒎 ⋅𝑨𝑇 ⋅ �̂� d𝑉0 + 𝑭 𝑠

int, (50)

where 𝑭 𝑠
int is the stabilization term for internal force, which can be approximated by

𝑭 𝑠
int = 𝑲𝑁𝐿

𝑠 ⋅ 𝑼 . (51)

4.2. Linear elasticity

Considering the Saint Venant–Kirchhoff model and the small deformation assumption, the stiffness matrix format of the linear
elastic problem is

𝑲𝐿 = 𝑲𝐿
𝑐 +𝑲𝐿

𝑠 , (52)

with

𝑲𝐿
𝑐 =

(

𝜫∇
𝑘∗
)𝑇

⋅ ∫𝑉0
∇𝒎 ⋅ �̃�𝑇 ⋅ ̂ ⋅ �̃� ⋅ ∇𝒎𝑇 d𝑉0 ⋅𝜫∇

𝑘∗, (53)

where the matrix �̃� is given in Appendix B. Besides, the stabilization matrix can be approximated as

𝑲𝐿
𝑠 = 𝛼

(

𝑰𝐾 −𝜫∇
𝑘
)𝑇 (

𝑰𝐾 −𝜫∇
𝑘
)

, (54)

and 𝛼 is a stabilization parameter, which can be selected with a similar form as given in Eq. (48), 𝛼 = 1
9 tr(̂) with for linear elasticity

s constant.

.3. Stresses and internal force

For linear elasticity, once we have solved the displacement vector 𝑼 , we can proceed to calculate the strains and stresses as

�̂� = �̃�∇𝒎𝑇𝜫∇
𝑘∗𝑼 , �̂� = ̂�̂� = ̂�̃�∇𝒎𝑇𝜫∇

𝑘∗𝑼 . (55)

For finite strain elasticity, we should calculate the deformation gradient 𝑭 and then the right Cauchy–Green tensor 𝑪 in each
teration. The deformation gradient 𝑭 can be calculated by

𝑭 = 𝑰 + ∇𝒎𝑇𝜫∇
𝑘∗𝑼 𝑡, (56)

here 𝑼 𝑡 is the displacement at current step. We can calculate the Piola–Kirchhoff stress 𝑺 based on Eq. (15), and the Cauchy stress
can be calculated as

𝝈 = 1
𝐽
𝑭𝑺𝑭 𝑇 (57)

For hyperelastic problems, the internal force can be obtained based on Eq. (37):

𝛿𝑼𝑇 ⋅ 𝑭 int = ∫𝑉0
𝛿�̂�𝑇

⋅ �̂� d𝑉0 = ∫𝑉0
(𝑨 ⋅ 𝛿𝜽)𝑇 ⋅ �̂� d𝑉0. (58)

Based on Eq. (22), the internal force can be obtained as

𝑭 int =
(

𝜫∇
𝑘∗
)𝑇

⋅ ∫𝑉0
∇𝒎 ⋅𝑨𝑇 ⋅ �̂� d𝑉0 + 𝑭 𝑠

int, (59)

where 𝑭 𝑠
int is the stabilization term for internal force, which can be approximated by

𝑭 𝑠
int = 𝑲𝑁𝐿

𝑠 ⋅ 𝑼 𝑡. (60)

5. Numerical examples

5.1. 3D Cook’s membrane problem

In the first example, the 3D Cook’s membrane problem is considered to assess the bending behavior of the proposed method. The
cantilever beam is fixed on the left side, and tractions are applied at the right side for two cases: 𝑇1 = (0, 𝑓 , 0) and 𝑇2 = (0, 2𝑓, 𝑓 ).
The geometric dimensions are 𝐻1 = 44, 𝐻2 = 16, 𝐿 = 48, and 𝐵 = 10 (shown in Fig. 4). The problem will be analyzed using the
8

assumptions of small and large deformations, respectively.
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Fig. 4. 3D Cook’s membrane: Geometry and meshes.

Table 1
Maximum displacements 𝑢𝑦 for different discretizations under 𝑇1.

𝑁 VEM FEM

𝑘 = 1 𝑘 = 2 𝑘 = 1(Q1) 𝑘 = 2(Q2)

2 0.647014 0.788781 0.573815 0.778637
3 0.735537 0.794386 0.712435 0.791497
4 0.776021 0.797581 0.768878 0.796696
5 0.790484 0.799169 0.788673 0.798904

Table 2
Maximum total displacements 𝑢𝑠𝑢𝑚 for different discretizations under 𝑇2.
𝑁 VEM FEM

𝑘 = 1 𝑘 = 2 𝑘 = 1(Q1) 𝑘 = 2(Q2)

2 4.59913 7.34473 3.77858 7.25192
3 5.69291 7.37835 5.86101 7.34340
4 6.34573 7.38426 6.88095 7.37632
5 6.55272 7.39121 7.21377 7.38967

5.1.1. Linear elasticity analysis
A linear elastic analysis of the Cook’s membrane is performed under the assumption of small deformations. The material

parameters with 𝐸 = 10 and 𝜈 = 0.3 are given. To verify the accuracy and convergence of the higher-order VEM in this problem,
four different mesh discretizations are described with the parameter 𝑁 . By selecting 𝑁 = 2, 3, 4, 5, such that the element is divided
into 2𝑁 ×2𝑁 in the vertical and horizontal directions (see Fig. 4). A first-order VEM and the finite element method with linear and
quadratic ansatz functions (Q1 and Q2) are used for comparison.

Firstly, the traction force 𝑇1 with 𝑓 = 0.02 (𝑇1 = (0, 𝑓 , 0)) is applied at the right side. The maximum vertical displacement values
obtained from the calculations for different element divisions are listed in Table 1. Fig. 5(a) shows the convergence analysis for
the maximum displacement 𝑢𝑦. It can be seen that the computational results of the higher-order VEM are similar to those of the
higher-order FEM, and both exhibit good computational accuracy and convergence speed. In addition, the higher-order methods
can achieve greater computational accuracy when compared with the first-order methods.

Secondly, the traction force 𝑇2 with 𝑓 = 0.02 (𝑇2 = (0, 2𝑓, 𝑓 )) is used for the three-dimensional deformation of Cook’s membrane.
Table 2 lists the total displacement values for the different element divisions under traction force 𝑇2. The convergence analysis of
the total displacement 𝑢𝑠𝑢𝑚 is shown in Fig. 5(b). It can be seen that the higher-order VEM achieves better accuracy and convergence
speed, while the convergence of the first-order VEM for displacements under load 𝑇2 is quite slow.

For two different loading forms and different meshes, the obtained results by high-order VEM for displacement and stress are
plotted in Fig. 6 and Fig. 7, respectively.
9
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Fig. 5. Displacement obtained by different discretizations under different methods; (a) vertical displacement for 𝑇1; (b) real displacement for 𝑇2.

Fig. 6. Contour plots for different meshes under the traction force 𝑇1 = (0, 0.02, 0); (a) displacement 𝑢𝑦; (b) von Mises stresses.

Fig. 7. Contour plots for different meshes under the traction force 𝑇2 = (0, 0.04, 0.02); (a) displacement 𝑢𝑠𝑢𝑚; (b) von Mises stresses.
10
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Table 3
Maximum displacements 𝑢𝑦 for different discretizations under 𝑇1 = (0, 4, 0).

𝑁 VEM FEM

𝑘 = 1 𝑘 = 2 𝑘 = 1(Q1) 𝑘 = 2(Q2)

2 9.6363 11.2741 8.62856 11.162
3 10.7117 11.2943 10.3517 11.2515
4 11.0981 11.2943 11.0072 11.2828
5 11.2351 11.3027 11.2099 11.2974

Table 4
Maximum total displacements 𝑢𝑠𝑢𝑚 for different discretizations under 𝑇2 = (0, 6, 3).
𝑁 VEM FEM

𝑘 = 1 𝑘 = 2 𝑘 = 1(Q1) 𝑘 = 2(Q2)

2 30.4996 34.9161 27.7125 35.0333
3 33.001 35.3562 32.7994 35.352
4 33.9804 35.4346 34.543 35.436
5 34.2571 35.469 35.0847 35.4734

Fig. 8. Displacement obtained by different discretizations for different methods; (a) vertical displacement for 𝑇1 = (0, 4, 0); (b) total displacement for 𝑇2 = (0, 6, 3).

5.1.2. Nonlinear elasticity analysis
Finite strain elasticity is considered for Cook’s membrane using a Neo-Hookean model with material parameters 𝜆 = 100 and

𝜈 = 40. To verify the accuracy and convergence of the higher-order VEM in such hyperelastic materials, the same element divisions
as in linear elastic analysis are chosen. The results obtained from the first-order VEM and the finite element method are still selected
for comparison.

For the first loading condition, the right-hand traction force 𝑇1 = (0, 𝑓 , 0) is applied with 𝑓 = 4. The calculated maximum
vertical displacement 𝑢𝑦 for different element divisions is listed in Table 3. Fig. 8(a) shows the convergence analysis of the
maximum displacement 𝑢𝑦. The second-order VEM continues to demonstrate high computational accuracy in problems involving
finite deformation.

For the second loading condition, 𝑇2 = (0, 2𝑓, 𝑓 ) with 𝑓 = 3 is chosen as the right-hand side traction force. The values and
convergence analysis of the maximum real displacements for different element divisions are shown in Table 4 and Fig. 8(b),
respectively. Again the convergence of the first-order VEM is not good for the given traction force 𝑇2. On the contrary, the
higher-order VEM still produces highly accurate results similar to those of the higher-order FEM.

The deformation configurations and the displacements 𝑢𝑦 and von Mises stress contour plots for the different meshes under the
traction force 𝑇1 are depicted in Fig. 9. Meanwhile, Fig. 10 shows the deformations and the contours of the different meshes under
the traction force 𝑇2.

5.2. Punch problem

The second example considers a block under a vertical uniform load. The geometry and dimensions are shown in Fig. 11, where
𝐿1 = 𝐿2 = 2 and 𝐻 = 1. The Neo-Hookean material model is used with the Lame constants 𝜆 = 400.75 and 𝜇 = 92.5. A uniform load
of 𝑃1 = 300 and 𝑃2 = 600 is applied to the upper surface and the other boundary conditions are shown in Fig. 11.

As in the previous example, the discretized mesh of different scales is described by the parameter 𝑁 . The model is divided into
𝑁 ×2𝑁 ×2𝑁 equivalent meshes with 𝑁 = 4, 6, 8, 10, and 16. The first-order finite element method (FEM, Q1) and second-order finite
element method (FEM, Q2) are used for comparison. The vertical displacement 𝑢𝑧 of point 𝐴 (as shown in Fig. 11) is selected for
11

convergence analysis in different meshes.
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Fig. 9. Contour plots for different meshes under the traction force 𝑇1 = (0, 4, 0); (a) displacement 𝑢𝑦; (b) stresses 𝑠𝑥𝑦.

Fig. 10. Contour plots for different meshes under the traction force 𝑇2 = (0, 6, 3); (a) displacement 𝑢𝑠𝑢𝑚; (b) stresses 𝑠𝑥𝑦.

The values of the vertical displacement 𝑢𝑧 at point 𝐴 are listed in Table 5 for both the regular and polyhedral meshes of the
high-order VEM while the pressure at the top is 𝑃 = 𝑃1 = 300. The convergence of the displacements 𝑢𝑧 at point 𝐴 for different
methods under the current pressure load is shown in Fig. 12(a). It can be observed that even with the coarse meshes, the second-order
VEM is capable of achieving more accurate results. The results obtained by second-order VEM using the regular hexahedral mesh
are found to be in close agreement with those obtained by second-order FEM.

Besides, a pressure of value 𝑃2 = 600 is applied to the top of the block, and the convergence analysis of the vertical displacement
at point 𝐴 obtained for different meshes is given in Table 6 and illustrated in Fig. 12(b). Even though the block is under strong
pressure, the second-order VEM can yield accurate and stable results. In contrast, the first-order VEM exhibits poor convergence in
this problem, regardless of whether the pressure is 𝑃 or 𝑃 .
12
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Fig. 11. Block under compression: Geometry and boundary conditions.

Table 5
The vertical displacement 𝑢𝑧 of point 𝐴 for different element divisions 𝑁 under 𝑃1.
𝑁 VEM(regular) VEM(polyhedral) FEM

𝑘 = 1 𝑘 = 2 𝑘 = 1 𝑘 = 2 𝑘 = 1(Q1) 𝑘 = 2(Q2)

4 −0.4570 −0.6343 −0.4482 −0.6333 −0.6555 −0.6352
6 −0.4828 −0.6358 −0.4747 −0.6384 −0.6449 −0.6345
8 −0.5003 −0.6353 −0.4929 −0.6380 −0.6403 −0.6344
10 −0.5132 −0.6349 −0.5064 −0.6379 −0.6382 −0.6344
16 −0.5383 −0.6345 −0.5330 −0.6351 −0.6358 −0.6344

Table 6
The vertical displacement 𝑢𝑧 of point 𝐴 for different element divisions 𝑁 under 𝑃2.
𝑁 VEM(regular) VEM(polyhedral) FEM

𝑘 = 1 𝑘 = 2 𝑘 = 1 𝑘 = 2 𝑘 = 1(Q1) 𝑘 = 2(Q2)

4 −0.5755 −0.7888 −0.5675 −0.7847 −0.869 −0.8063
6 −0.5989 −0.7958 −0.5908 −0.7919 −0.8441 −0.8045
8 −0.6152 −0.7996 −0.6065 −0.8013 −0.8265 −0.8045
10 −0.6275 −0.8015 −0.6191 −0.8036 −0.8174 −0.8045
16 −0.6522 −0.8031 −0.6446 −0.804 −0.8084 −0.8045

Fig. 12. The vertical displacement 𝑢𝑧 of point 𝐴 for different element division 𝑁 :(a) for 𝑃 = 𝑃1 = 300; (b) for 𝑃 = 𝑃2 = 600.
13
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Fig. 13. Contour plots of stress 𝑆𝑥𝑦 obtained by second-order VEM with different meshes under pressure 𝑃2.

Fig. 14. Deformed shape and the vertical displacement contours obtained by second-order VEM with different meshes under pressure 𝑃2.

Finally, the contour plots of stress 𝑆𝑥𝑦 obtained by the second-order VEM on the hexahedral mesh and polyhedral mesh for a
pressure of 𝑃2 are depicted in Fig. 13. Fig. 14 shows the contour plots of displacement 𝑢𝑧 obtained by the second-order VEM on the
hexahedral mesh for larger pressures 𝑃2.

5.3. Three-dimensional fracture mechanics with non-matching mesh

To get more accurate stress results for a lot of fracture mechanical problems, denser meshes are often needed near the crack
surface. In the traditional finite element method, it is relatively complicated to generate pure hexahedral meshes with local
refinement. Since the virtual element method can automatically handle polyhedral meshes, the ‘‘hanging nodes’’ in the finite element
method can be consistently adapted in VEM. Therefore, the virtual element method can directly pre-refine the mesh in a specified
area without affecting the global mesh.

In this work, a cylindrical tube with a through-crack (shown in Fig. 15) is considered under the small strain assumption. The
inner radius of the cylinder is 9, the outer radius is 10, and the overall length is 40. Given the symmetry of the model, only the
1∕4 model is selected for calculation (see Fig. 15(b)). As shown in Fig. 16, we use smaller-sized elements for discretization (can be
hexahedrons or polyhedrons) near the crack surface. In the process of transition between elements of different sizes, we directly use
VEM to handle the hanging nodes existing in the model, thereby avoiding discontinuous displacements or the introduction of other
interpolation techniques.

The material parameters are assumed as 𝐸 = 200000 and 𝜈 = 0.3. In addition, both ends of the cylindrical tube are subject to
a uniformly distributed load 𝑃 = −1000 (negative sign means the load is outward). Furthermore, the second-order finite element
method (FEM, Q2) with a fine mesh is chosen for comparison. To facilitate comparison with the finite element results, we define a
path (path 1) as shown in Fig. 15. The comparison of the displacement and stress results obtained by high-order VEM and the finite
element method on path 1 are shown in Fig. 17. It can be seen that the displacement results calculated by VEM are very accurate
and the stress results are within the acceptable range. Lastly, the contour plots of von Mises stress for different meshes are given in
Fig. 18
14
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Fig. 15. Cylindrical tube with through-crack, (a) geometric model and crack surface, (b) 1/4 model used for calculation.

Fig. 16. Non-matching meshes for the cylindrical tube (a) hexahedron-dominated mesh, (b) polyhedron-dominated mesh.

Fig. 17. Numerical solutions of displacement and stress on path 1 obtained by VEM (𝑘 = 2),(a) displacement 𝑢𝑦, (b) von Mises stress.

5.4. Torsion of a specimen with finite strain

Torsion problems can be used to test the effect of extreme mesh distortion during the deformation process. As shown in Fig. 19,
two different geometric models are selected for the analysis of this example. The first structure is a square column with size
𝐿 ×𝐷 ×𝐻 = 1 × 1 × 10 (see Fig. 19(a)). The second structure is a square column with bifurcation (see Fig. 19(b))1

In this example, the polyhedral mesh and finite element mesh (hexahedral mesh) are employed for the two structures respectively,
as shown in Fig. 19. For the first square column, the bottom nodes are fixed and the top nodes rotate around the 𝑍-axis. For the

1 The geometry file given in https://github.com/Qinxiaoye/geometry/blob/main/torsion.stp.
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Fig. 18. Contour plots of von Mises stress for different meshes (scale factor is 20), (a) hexahedron-dominated mesh, (b) polyhedron-dominated mesh, (c)
polyhedron-dominated mesh without edge, (d) structure after deformation.

Fig. 19. Geometries and meshes for hyperelastic torsion, (a) square column, (b) square column with bifurcation.

second square column with bifurcation, the bottom nodes are fixed and the analysis process consists of two sub-steps: the first step:
a displacement (𝑢𝑧 = −1) is applied at the nodes on the top; in the second step: the nodes are fixed and rotated around the 𝑍-axis
at the top. The material model for the two geometries is assumed as the Neo-Hookean hyperelastic law with the Lame parameters
𝜆 = 100 and 𝜇 = 40.

For the first square column, the deformed meshes and contour plots of displacement 𝑢𝑥 are given in Fig. 20 for different rotation
angles. The expected twisting deformations are depicted in Fig. 20. It is also noticeable a warping deformation along the column
is observed for 𝜃 = 20𝜋, which indicates that the numerical solutions are still converging to the correct physical behavior. For the
16
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Fig. 20. Contour plots of displacement 𝑢𝑥 obtained by VEM (𝑘 = 2) for the square column.

Fig. 21. Contour plots of von Mises stress obtained by VEM (𝑘 = 2) for the square column with bifurcation.

second square column (square column with bifurcation), the deformed meshes and contour plots of von Mises stress are given in
Fig. 21 for different rotation angles.

5.5. Pinch of cylindrical shell

Pinch analysis of cylindrical shells is a nonlinear buckling benchmark for shell structures [60,61]. As discussed in Ref. [60],
a cylindrical shell is considered with thickness ℎ = 5, radius 𝑅 = 100, and length 𝐿 = 200. The Neo-Hookean model is selected
with Young’s modulus 𝐸 = 5 and 𝜈 = 0.35. The geometric model and two different meshes are given in Fig. 22. Due to symmetry,
we consider one-half of the geometric model. The shell is meshed with 1200 hexahedral elements and 1342 polyhedral elements,
respectively.
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Fig. 22. Geometries and meshes for cylindrical shell, (a) hexahedral mesh, (b) polyhedral mesh.

Fig. 23. Contour plots of displacement 𝑢𝑦 and deformed shape for different meshes at last time step, (a) hexahedral mesh, (b) polyhedral mesh.

As shown in Fig. 22, one end of the cylinder is fixed, and a nodal force 𝐹 = 1 is applied at the tip of the other end (see point
A in Fig. 22). Load control and path-following techniques are necessary for computing such problems. In this work, the arc length
is selected to track the response of the cylinder. The virtual element method with 𝑘 = 2 and second-order finite element method
(FEM, Q2) are selected to calculate the solutions of the cylinder. The deformed shapes of the cylinder obtained by VEM for different
meshes are illustrated in Fig. 23 when the time step is 30. Besides, the deformed configuration of the cylindrical shell at various
time steps for hexahedral mesh is given in Fig. 24. The load–deflection curves of the displacement 𝑢𝑦 at point 𝐴 are given in Fig. 25
for the different discretizations.

6. Conclusion

A general high-order three-dimensional virtual element method for linear and nonlinear elasticity is proposed in this work. The
proposed method allows to use of general polyhedral meshes. We apply high-order VEM (𝑘 = 2) to three-dimensional nonlinear
elastic problems for the first time. Furthermore, as a by-product, the linear elastic formulation is derived. Hence, examples include
linear elastic and hyperelastic problems. Compared with the low-order VEM for elasticity, the second-order method avoids bending
locking, and the results are more accurate than the first-order VEM. Since VEM can use polyhedral meshes, the hexahedral-dominated
mesh can be employed for complex geometric models. Besides, locally refined meshes can be set up easily to treat fracture mechanics
with VEM. It can be seen from the calculation examples that VEM is more flexible when dealing with elastic mechanics problems. In
addition, due to its flexibility and accuracy, the method can be extended to other nonlinear problems. However, it should be noted
that the high-order virtual element method needs to divide the polyhedral element into tetrahedral elements and then conduct
numerical integration, so its calculation efficiency is lower than that of the first-order virtual element method. In order to improve
18
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Fig. 24. Deformed configuration of the cylindrical shell for pinching problem (a) deformed configuration at various time steps for hexahedral mesh, (b) deformed
configuration at the last step for polyhedral mesh.

Fig. 25. Load–deflection curves of the cylindrical shell subjected to end pinching force.
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E

Appendix A. Projection operator for polygons

For a given 3D polyhedral element 𝐸 whose surface 𝐹 ∈ 𝜕𝐸 is a planar polygon, we need to solve the local projection operator
on the surface to convert the integral on the polygon surface to edges. We begin by defining the local lifting spaces on each face 𝐹

̃(𝐹 ) ∶=
{

𝒗 ∈ 1(𝐹 ) ∶ 𝛥𝐹 𝒗 ∈  𝑘(𝐹 ), 𝒗|𝑒 ∈  𝑘(𝑒), 𝑒 ∈ 𝜕𝐹
}

, (A.1)

where 𝛥𝐹 is the 2D Laplacian over the face 𝐹 . Using the local coordinate shown in Fig. 2, the scaled monomials 𝐹
𝑘 can be defined

as

𝑓
𝑘 ∶=

{

𝑚𝑓
𝛼 =

(

𝝃 − 𝝃𝐹
ℎ𝐹

)𝛼
for 𝜶 ∈ N𝑑−1 with |𝛼| ≤ 𝑘

}

. (A.2)

For higher-order VEM, the local degrees of freedom can be selected as

• the values of 𝒗𝑝 at the vertices of 𝐹 ;
• the values of the 𝑘 − 1 internal Gauss–Lobatto nodes on each edge 𝑒 ∈ 𝜕𝐹 ;
• the scaled face moments:

1
|𝐹 |

∫𝐹
𝒗𝒑𝑓𝑘−2 d𝛺𝐹 , ∀𝒑𝑓𝑘−2 ∈  𝑘−2(𝐹 ). (A.3)

Then we can define the energy projector 𝛱∇
𝑘,𝐹 ∶ ̃𝑘(𝐹 ) →  𝑘(𝐹 ):

⎧

⎪

⎨

⎪

⎩

∫𝐹
∇𝐹𝛱

∇
𝑘,𝐹 𝒗 ⋅ ∇𝐹𝒑 d𝛺𝐹 = ∫𝐹

∇𝐹 𝒗 ⋅ ∇𝐹𝒑 d𝛺𝐹 ,𝒑 ∈  𝑘(𝐹 )

∫𝐹

(

𝒗 −𝛱∇
𝑘,𝐹 𝒗

)

d𝛺𝐹 = 0
(A.4)

Lastly, we get the two-dimensional virtual element space on 𝐹 as

𝑓
𝑘 (𝐹 ) =

{

𝒗 ∈ ̃𝑓
𝑘 (𝐹 ) ∶ ∫𝐹

𝒗 ⋅ 𝒒 d𝛺𝐹 = ∫𝐹

(

𝛱∇
𝑘,𝐹 𝒗

)

⋅ 𝒒 d𝛺𝐹 ,∀𝒒 ∈  𝑘∖ 𝑘−2

}

. (A.5)

According to the definition of degrees of freedom, we can obtain the projection operator matrix 𝜫∇
𝑘,𝐹 according to Eq. (A.4).

Appendix B. Matrix form for hyperelastic problems

Using the Voigt notation, we have the matrix notation as

𝑺 ∶ 𝛿𝑬 = �̂�𝑇
⋅ 𝛿�̂� = 𝛿�̂�𝑇

⋅ �̂�, (B.1)

where 𝑺 is the second Piola–Kirchhoff stress tensor and 𝑬 is the Green–Lagrange strain tensor. Considering the definition of 𝜽 in
q. (41), we have

𝛿�̂� = 𝑨 ⋅ 𝛿𝜽 (B.2)

where

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹11 0 0 𝐹21 0 0 𝐹31 0 0
0 𝐹12 0 0 𝐹22 0 0 𝐹32 0
0 0 𝐹13 0 0 𝐹23 0 0 𝐹33
𝐹12 𝐹11 0 𝐹22 𝐹21 0 𝐹32 𝐹31 0
0 𝐹13 𝐹12 0 𝐹23 𝐹22 0 𝐹33 𝐹32
𝐹13 0 𝐹11 𝐹23 0 𝐹21 𝐹33 0 𝐹31

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (B.3)

Based on the definition, we have

𝛿𝑬 ∶  ∶ 𝛥𝑬 = 𝛿�̂�𝑇
⋅ ̂ ⋅ 𝛥�̂� = 𝛿𝜽𝑇 ⋅𝑨𝑇 ⋅ ̂ ⋅𝑨 ⋅ 𝛥𝜽 (B.4)

𝛥(𝛿𝑬) ∶ 𝑺 = 1
2
𝛥
(

𝛿𝑭 𝑇 ⋅ 𝛥𝑭 + 𝛥𝑭 𝑇 ⋅ 𝛿𝑭
)

∶ 𝑺 ≐ 𝛿𝜽𝑇 ⋅  ⋅ 𝛥𝜽, (B.5)

where

 = diag(𝑺,𝑺,𝑺) (B.6)

Substituting Eqs. (B.4) and (B.5) into Eq. (38), Eq. (39) can be obtained lastly.
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For small deformation assumption, the matrix �̃� has the form as

�̃� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (B.7)
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