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Abstract
In this work, we present a first-order stabilization-free virtual element method (SFVEM) for three-dimensional hyperelastic
problems. Different from the conventional virtual element method, which necessitates additional stabilization terms in the
bilinear formulation, themethod developed in this work operateswithout the need for any stabilization. Consequently, it proves
highly suitable for the computation of nonlinear problems. The stabilization-free virtual element method has been applied in
two-dimensional hyperelasticity and three-dimensional elasticity problems. In this work, the format will be applied to three-
dimensional hyperelasticity problems for the first time. Similar to the techniques used in the two-dimensional stabilization-free
virtual element method, the new virtual element space is modified to allow the computation of the higher-order L2 projection
of the gradient. This paper reviews the calculation process of the traditional H1 projection operator; and describes in detail
how to calculate the high-order L2 projection operator for three-dimensional problems. Based on this high-order L2 projection
operator, this paper extends the method to more complex three-dimensional nonlinear problems. Some benchmark problems
illustrate the capability of the stabilization-free VEM for three-dimensional hyperelastic problems.

Keywords Virtual element method · Stabilization free · Elastoplasticity · Nonlinear problems

1 Introduction

For a wide range of engineering and scientific problems gov-
erned by partial differential equations, numerical methods
are an effective tool for simulating and solving such prob-
lems. The Virtual Element Method (VEM), as introduced in
[1, 2], has received more andmore attention due to its greater
flexibility in the fields of the element shape and the definition
of the degrees of freedom. As a generalization of the Finite
Element Method (FEM), the virtual element method allows
very general arbitrarily shaped elements, which makes the
method suitable for calculating some special problems such
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as crack propagation, hanging nodes, and adaptivemeshes. In
the framework of structural mechanics, the method has been
applied to different fields including linear elastic problems
[3–7], hyperelastic materials at finite deformations [8–11],
contact problems [12–15], phase field fracture [16, 17],
elastodynamics problems [18–21], and finite elastoplastic
deformations [22–24]. Specific work of VEM in engineer-
ing can be found in the latest published VEM book [25].
At the same time, there are also other numerical methods
that use polygonal or polyhedral meshes for calculations,
such as Polygonal Finite Element Method (PFEM) [26, 27],
Discontinuous Galerkin Methods (DG) [28, 29], Polygonal
Smoothed Finite Element Method (S-FEM) [30, 31]. How-
ever, the above-mentioned methods have general difficulties
when dealing with three-dimensional problems. For exam-
ple, the above polygonal finite element methods have great
difficulties when solving nonconvex polyhedrons or deal-
ing with high-order elements. Generally speaking, VEM has
higher advantages when dealing with complex-shaped ele-
ments and high-order elements.

Given the flexibility of VEM, it is interesting to develop a
new virtual element format for three-dimensional hyperelas-
tic solids. According to previous relevant descriptions [1, 2],
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themain idea ofVEMis a split of the variableuh into a projec-
tion part �u and a remainder, that is uh = �u + (uh −�u).
This formulation requires additional stabilization terms in
VEM to ensure that the element stiffness matrix has the cor-
rect rank (for elementswithmore than 4 nodes). The selection
of stabilization terms, especially for nonlinear problems, is a
complicated issue. Different formulations can be found in [3,
7], which are extended to energy stabilization in [9, 25, 32].
However, a virtual element that does not require any stabi-
lization will be more flexible and reliable for the solution of
nonlinear problems.

With this aim, we are going to construct a three-
dimensional stabilization-free virtual element method and
use it to solve hyperelastic problems. In conventional VEM,
the stabilization term is needed because the strain order is
too low to accurately describe the energy within the ele-
ment. By increasing the order of the strain polynomial, the
stabilization-free virtual element method (SFVEM) [33] has
been recently proposed and has been successfully used in dif-
ferent fields [34–36]. However, these applications are usually
limited to two-dimensional linear problems. Recently, the
author developedSFVEMfor hyperelastic problems [37], but
it is still for two-dimensional problems. Similar to the two-
dimensional problem, by using the high-order L2 projection
operator �0

l,E∇ of the gradient of function in H1(E), we
can construct a stabilization-free virtual element format for
three-dimensional problems. The first work on stabilization-
free 3D virtual elements can be found in [38], but it is
mainly aimed at heat transfer problems. In this work, the
virtual element space is modified to allow the computation
of a higher-order L2 projection operator. Based on that the
SFVEM for three-dimensional problems will be developed
and applied to hyperelasticity problems for the first time. In
addition, this work will also use the arc length method to
solve unstable structures.

Based on the above description, we can divide the paper
into the following parts. In Sect. 2, the governing equations
for hyperelastic problems are reviewed. Then, the three-
dimensional stabilization-free virtual element spaces will
given in Sect. 3 for arbitrary order k. Based on the above
definitions, the H1 projection operator and higher-order L2

projection operator are developed in Sect. 4. The virtual ele-
ment discretization will be described for 3D hyperelastic
problems in Sect. 5. Numerical examples are presented and
discussed in Sect. 6. The paper closes with some concluding
remarks in Sect. 7.

2 Governing equations for finite elasticity

Consider a three-dimensional elastic solid that is deforming
from the initial configuration occupying a volume B0 ∈ R

3

with boundary �0 = ∂B0 into the current configuration Bt

with boundary ∂Bt (see Fig. 1). The position x of a material
point P initially at X is given by the motion

x = ϕ (X, t) = X + u(X, t), (1)

where u is the displacement field. We denote by F the defor-
mation gradient defined by

F = Gradϕ = 1 + ∇u, (2)

where 1 represents the second-order unity tensor and ∇u is
the displacement gradient with respect to the initial coor-
dinates. Based on F, the right Cauchy-Green deformation
tensor is given by

C = FT · F. (3)

Further, we can define the Green-Lagrange strain tensor

E = 1

2
(C − 1) . (4)

For the static case, the equilibrium requires

− DivP = f , (5)

where P is the first Piola–Kirchhoff stress and f is the body
force. The Dirichlet and Neumann boundary conditions are

u = ū on �D, (6)

P · N = t̄ on �N , (7)

where N is the outward normal vector of ∂B0.
The second Piola–Kirchhoff stress is often used in con-

stitutive modeling since it is work conjugated to the Green-
Lagrange strain tensor. The second Piola–Kirchhoff stress
can be obtained from P as

S = F−1 · P, (8)

where σ is the Cauchy stress tensor (real stress), J is the
determinant of the deformation gradient tensor

J = det(F). (9)

The work conjugate relationship can be written as

W =
∫
V0

δE : SdV0 =
∫
V0

δF : PdV0, (10)

The virtual element formulation for a hyperelastic mate-
rial can start from the potential energy function directly. By
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Fig. 1 Motion of a body from
the initial configuration B0 to
the current configuration Bt

introducing a strain energy function �(u) for elastic prob-
lems, the second Piola–Kirchhoff stresses follow

S = 2
∂�(u)

∂C
. (11)

For a homogeneous compressible isotropic hyperelastic
material, the strain energy function �(u) for the Neo-
Hookean hyperelastic model can be adopted as

� = μ

2
(IC − 3) − μ ln J + λ

2
(ln J )2 , (12)

where IC is the first invariant of the right Cauchy-Green ten-
sor in Eq. (3), J is the determinant of F, λ and μ are the two
Lame parameters.

Considering ∂ J
∂C = 1

2 JC
−1, the second Piola–Kirchhoff

stress tensor S can be obtained for the Neo-Hookean hyper-
elastic model (Eq. (12)) as

S = 2
∂�

∂C
= μ1 − 2μ

1

J

∂ J

∂C
+ 2λ (ln J )

1

J

∂ J

∂C

= μ
(
1 − C−1

)
+ λ (ln J )C−1. (13)

By differentiating the secondPiola–Kirchhoff stress S, the
constitutive tensor D can be deduced as

D = 2
∂S
∂C

= λC−1 ⊗ C−1 + 2 (μ − λ ln J )L, (14)

with the components of L

LI J K L = −∂
(
C−1)

I J

∂CKL

= 1

2

[(
C−1

)
I K

(
C−1

)
J L

+
(
C−1

)
I L

(
C−1

)
J K

]
.

(15)

3 3D stabilization-free virtual element
spaces

In this part, we describe the basic ideas of the three-
dimensional stabilization-free virtual elementmethod (SFVEM).

3.1 Notation

For three-dimensional problems, a decomposition Th =
{�E }h is introduced where �E is a partition of the computa-
tional domain � into non-overlapping polyhedron elements.
For each polyhedron element E with boundary ∂E as shown
in Fig. 2, the parameters are given as: volume |E |, barycenter
xE = (xE , yE , zE )T , and diameter hE . Besides, an element
face F ∈ ∂E is a planar and a two-dimensional subset ofR3.
We denote the set of polygon faces by Fh as shown in Fig. 2.
By defining a local coordinate system (ξ, η), the parameters
for the local polygon face are given as area |F |, barycenter
ξ F = (ξF , ηF )T , and diameter hF = supx, y∈F |x − y|. Spe-
cific requirements for 3D virtual element mesh can be found
in [39].

For three-dimensional problems (d = 3), we introduce
scaled monomials Mk(E) as

Mk(E) :=
{
mα =

(
x − xE

hE

)α

forα ∈ N
d with |α| ≤ k

}
,

(16)

where α = (α1, α2, α3) is a multiindex and xα :=
xα1
1 · · · xαd

1 . The dimension of the given polygonal function
space (Eq. (16)) is

Nk := dim (Pk(E)) = (k + 1)(k + 2)(k + 3)

6
(17)
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Fig. 2 A polyhedral element
and its polygonal surfaces

Using local coordinates, the scaled monomials M f
k (F) for

the polygon face F of a polyhedron can be defined as

M f
k (F) :=

{
m f

α =
(

ξ−ξ F

hF

)α

for α∈N
d−1 with |α|≤k

}
,

(18)

with the dimension

N f
k := dim (Pk(F)) = (k + 1)(k + 2)

2
(19)

3.2 Virtual element space

For a given three-dimensional polyhedral element E with
boundary ∂E and F ∈ ∂E a polygonal face of E , we start
by defining the local lifting spaces on each face F

Ṽk(F) := {
uh ∈ H1(F) ∩ C0(F) : �Fuh

∈ Pk(F), uh |e ∈ Pk(e), e ∈ ∂F
}
, (20)

where �F is the 2D Laplacian over the face F . In this work,
a low-order Ansatz is adopted for the construction of the
stabilization-free virtual element formulation (k = 1) and
the scaled monomials m f

α ∈ M f
k (F) (see Eq.(18)) have the

explicit form as

m f
1 = 1, m f

2 = ξ − ξF

hF
m f

3 = η − ηF

hF
. (21)

The degrees of freedom can be selected as the value uh(v)

for the vertice F . We can define the H1 projection operator
�∇

k,F : Ṽk(F) → Pk(F) using

∫
F

∇F�∇
k,Fuh · ∇F pd�F

=
∫
F

∇Fuh · ∇F pd�F , ∀p ∈ Pk(F), (22)

P0
(
�∇

k,Fuh − uh
)
F

= 0. (23)

Integration by parts allows the evaluation of projection oper-
ator �∇

k,F , details can be found in [37, 40]. The higher-order
moments in Eq. (20) can be approximated so the dimension
of the function space does not change [41]. Then we can
define the two-dimensional virtual element space

Vh
k (F) :=

{
uh ∈ Ṽk(F) :

∫
F
uh pd�F

=
∫
F

(
�∇

k,Fuh p
)
d�F , ∀p ∈ Pk(E)

}
. (24)

For the 3D polyhedral element E , we consider the prelim-
inary virtual space

Ṽk(E) := {
uh ∈ H1(E) ∩ C0(E) : �uh

∈ Pk(E), uh |e ∈ Ṽk(F), F ∈ ∂E
}
. (25)

Next, we can compute the H1 projection operator �∇
k,E :

Ṽk(E) → Pk(E) using

∫
E

∇�∇
k,Euh · ∇ pd� =

∫
E

∇uh · ∇ pd�, ∀p ∈ Pk(E),

(26)

P0
(
�∇

k,Euh − uh
)

= 0. (27)

Then we can define the local virtual element space

Vh
k (E) :=

{
uh ∈ Ṽk(E) :

∫
E
uh pd�

=
∫
E

(
�∇

k,Euh
)
pd�, ∀p ∈ Pk(E)

}
. (28)

The projection operator �∇
1,E depends only on its vertex val-

ues for k = 1. Thus the function space can be uniquely
characterized by the vertex values (named degrees of free-
dom). According to the above space (28), we can construct
a discrete form of the classic three-dimensional VEM. This
consistency part requires additional stabilization for a correct
rank of the element stiffness matrix.
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To construct a virtual element formulation without any
stabilization for three-dimensional problems, we need to
introduce an additional enhancement space for k = 1.
Inspired byRef. [42],wedefine a local enlarged enhancement
virtual element space based on the higher-order polynomial
projection

V1,l(E) :=
{
uh ∈ H1(E) : �uh ∈ Pl+1(E),

∫
E
uh pd�

=
∫
E

�∇
1,Euh pl+1d�, ∀pl+1 ∈ Pl+1(E)

}
(29)

Again the degrees of freedom can be selected as the values
at NV

E vertices in E (same as the d.o.f used in Vh
k (E)). The

order of the polynomial (l in Eq. (29)) is related to the number
of vertices NV

E . For two-dimensional problems, the selection
of l to ensure well-posedness can be found in [33, 35, 43,
44]. For three-dimensional problems, the selection of l has
been based on an eigenvalue analysis, and the relationship
between the order l and the number of vertices NV

E can be
found in our previous work [45]. As discussed in [45], the
order l can be selected as l = 1 ∼ 2 for most of the elements.

4 Projection operators

The H1 projection operator �∇
1,F : Ṽ1(E) → P1(E) was

introduced in the previous section. This projection operator
is known from conventional VEMwhere a stabilization term
was to be introduced to ensure the correct rank of the element
stiffness matrix. In this work, we construct a virtual element
formulation without any stabilization for 3D problems. As
shown in Eq. (29), theH1 projection operator is necessary in
the local enlarged enhancement virtual element space for the
approximation of higher order moments. So in this part, we
need to review how to calculate the H1 projection operator
�∇

1,E for three-dimensional problems, and further explain

how to calculate the L2 projection operator �0
l,E∇.

4.1 H1 projection operator on polyhedral elements

In the present work, only the first-order element (k = 1) is
considered. The scaled monomials mα ∈ M1(E) have the
form

m1 = 1, m2 = x − xE
hE

, m3 = y − yE
hE

, m4 = z − zE
hE

.

(30)

According to the previous definition, the projector �∇
1,E :

V1(E) → P1(E) can be calculated by

∫
E

∇�∇
1,Euh ·∇ pd� =

∫
E

∇uh ·∇ pd�,∀p ∈ P1(E) (31)

with the additional condition

nE∑
i=1

(
�∇

k,Euh − uh
)

= 0, (32)

where nE is the number of vertices. Considering the Green
formula for Eq. (31), we have

∫
E

∇�∇
1,Euh ·∇ p d� = −

∫
E
uh ·�p d�+

∫
∂E

uh · ∂ p

∂n
d�,

(33)

where the projection operator �∇
1,E can be expanded in a

matrix form

�∇
1,EφT = mT�∇

1∗,E = φT�∇
1,E , (34)

where φ is the unknown basis function vector, �∇
1∗,E is

matrix formulation of the Ritz projection operator. Substi-
tuting Eq. (34) into Eq. (33), yields

∫
E

∇m · ∇mT d��∇
1∗,E

= −
∫
E

�m · φT d� +
∑
F⊂∂E

∫
F

(∇m · nF )φT d�, (35)

which leads to an equation system for �∇
1∗,E

G∇�∇
1∗,E = B∇ , (36)

where

G∇ :=
∫
E

∇m · ∇mT d�, (37)

B∇ :=
∑
F⊂∂E

∫
F

(∇m · nF ) φT d�. (38)

Since the surface F of a polyhedral element E is a polyg-
onal element, see Fig. 2, the shape function φ on the surface
is still unknown. In this aspect, the three-dimensional prob-
lem differs from the two-dimensional problem. Based on the
definition of the 3D virtual space (Eq. (25)), the unknown
shape function φ in B∇ can be calculated by
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B∇ =
∑
F⊂∂E

∫
F

(∇m · nF ) φT d�

=
∑
F⊂∂E

[
(∇m · nF )

∫
F

(
m f

)T
d� · �∇

1∗,F

]
, (39)

wherem f and�∇
1∗,F are the scaledmonomial vector andRitz

projectionmatrix with respect to local coordinates (ξ, η). For
k = 1, we can directly calculate the matrix G∇ through the
volume of the unit |E |, and the matrix B∇ can be simplified
as

B∇ =
∑
F⊂∂E

[
(∇m · nF ) · [|F |, 0, 0] · �∇

1∗,F

]
, (40)

where |F | is the area of F . Considering the consistency con-
dition in Eq. (32), the Ritz projection matrix is obtained by
solving Eq. (36).

4.2 L2 projection operator on polyhedral elements

Based on the L2(E) projection �0
l,E∇ of the gradient of

variables inV1,l(E) (see Eq. (29)) to [Pl(E)]3, this projection
can be explicitly expressed as

∫
E
pTl �0

l,E∇uhd� =
∫
E
pTl ∇uhd�. (41)

Integrating by parts of the right-hand side of Eq. (41), we can
obtain

∫
E
pTl ∇uhd� =

∫
∂E

(
pTl · nF

)
uhd� −

∫
E

(
div pl

)
uhd�.

(42)

The higher-order moments can be considered in the func-
tion space V1,l(E) [41], which also means that we need to
calculate the H1 projection operator.

The key idea for the stabilization-free formulation is to use
higher-order polynomials for the gradient, which results in a
mixed-form method. For the gradient ∇uh and the polyno-
mial pl , we follow the construction in [35, 36], the variable
field uh and the gradient can be expanded as

�0
l,E∇uh = (

N p)T �m ũ, pl = (
N p)T p̃l , (43)

where �m is a matrix form of the projector �0
l,E∇ and N p

is a matrix of complete polynomial of order l

(
N p)T :=

⎡
⎣mT

l 0 0
0 mT

l 0
0 0 mT

l

⎤
⎦ . (44)

Fig. 3 Polyhedral triangulation and numerical integration

Substituting Eq. (43) into Eq. (41), considering Eq. (42)
and uh = φT ũ, yields

p̃T
∫
E
N p (

N p)T d��m ũ

= p̃T
∫

∂E

(
N p · nF

)
φT d�ũ − p̃T

∫
E

(
divN p) φT d�ũ,

(45)

which can be rewritten as
∫
E
N p (

N p)T d��m

=
∫

∂E

(
N p · nF

)
φT d� −

∫
E

(
divN p) φT d�, (46)

since the form is true for all ũ and p̃. Similar to Eq. (35),
Eq. (46) leads to the matrix form

G�m = B, (47)

where

G :=
∫
E
N p (

N p)T d�, (48)

B :=
∫

∂E

(
N p · nF

)
φT d� −

∫
E

(
divN p) φT d�. (49)

The matrices B and G are very similar to the matrices
used in the H1 projection matrix, see Eqs. (37) and (38).
Between the twomatricesmentioned above,matrixG ismore
straightforward to compute. It involves dividing the polyhe-
dral element into multiple tetrahedral elements (as shown in
Fig. 3) and utilizing Gaussian integration at each tetrahedron
for the calculation. Since matrix G is the integration of a
complete polynomial, the application of the divergence the-
orem facilitates the conversion of the integral to the surface
F and subsequently to the edge e. A detailed exposition of
this process can be found in the VEM book [25].

The calculation of matrix B seems to be very complicated
because B contains higher-order moments (see Eq. (49)) that
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have not been defined before (another understanding is, that
we do not know the basis function φ within the element E
and on the element boundary F). In order not to increase the
degree of freedom, we can change the first-order polynomial
P1 in the boundary element space (see Eqs. (20) and (24)) to
an l-order polynomial Pl and can take advantage of the prop-
erties related to the enlarged enhancement virtual element
space (low-order mapping operators approximate high-order
moments) [41]. Then the matrix B can be written as

B =
∑
F⊂∂E

∫
e
N pnF�∇

1, f φ
T d� −

∫
E

(
divN p)φT�∇

1,Ed�

=
∑
F⊂∂E

∫
e
N pnF (m f

1 )T d��∇
1∗, f

−
∫
E

(
divN p)mT

1 d��∇
1∗,E . (50)

The integrations in Eq. (50) can be calculated by partitioning
F and E into triangles and tetrahedrons and adopting aGauss
quadrature rule.

Substituting matrices G and B into Eq. (47) yields the
projection matrix �m

�m = G−1B, (51)

and the gradient of the variable can be approximated by

∇u ≈ �0
l,E∇uh = (

N p)T �m ũ. (52)

5 Stabilization-free virtual element method
for 3D hyperelastic problems

According to the discussion in the previous section, we
can directly use Eq. (52) to approximate the gradient of
the variable. Under the premise of choosing an appropriate
polynomial order l, the virtual element method format does
not require additional stabilization terms. Therefore, when
addressing nonlinear problems such as hyperelasticity, we
can employ the same framework (calculation process) as in
the finite element method. Subsequently, we will follow the
basic ideas in continuummechanics to construct a format for
SFVEM to solve this nonlinear problem.

5.1 Lagrange linearized internal virtual work

Recall from Eq. (10) that the internal virtual work can be
expressed in a Lagrange form as

W =
∫
V0

δE : SdV0 (53)

Then, the linearization of the virtual work is obtained from

δW =
∫
V0

δE : �S dV0 +
∫
V0

�(δE) : S dV0. (54)

Considering the definition of the Green-Lagrange strain ten-
sor E (Eq. (4)), we have

δE = 1

2

(
δFT · F + FT · δF

)
(55)

and

�δE = 1

2

(
δFT · �F + �FT · δF

)

= 1

2

(
δDT�D + �DT δD

)
(56)

where

D = ∂u
∂X

, F = 1 + D. (57)

Substituting Eqs. (56) and (57) into Eq. (54) and consid-
ering �S = D : �E, the linearization of the virtual work
has the formulation as

δW =
∫
V0

δE : �SdV0 +
∫
V0

S :
(
δDT · �D

)
dV0

=
∫
V0

δE : D : �EdV0 +
∫
V0

S :
(
δDT · �D

)
dV0,

(58)

where D is the constitutive tensor given in Eq. (14).

5.2 Virtual element discretization

For three-dimensional problems, utilizing Voigt notation, the
Green-Lagrange strain tensor can be written as

Ê = [
EXX EYY EYY 2EXY 2EY Z 2EZX

]T
, (59)

and the second Piola–Kirchhoff stress can be written as

Ŝ = [
SXX SYY SZ Z SXY SY Z SZ X

]T
. (60)

Besides, the incremental constitutive relationship can be
rewritten as

�Ŝ = D̂ · �Ê. (61)

Considering Eq. (52), the gradient of displacement D
(defined in Eq. (57)) can be simulated as

D =
⎡
⎣

∂u
∂X

∂u
∂Y

∂u
∂Z

∂v
∂X

∂v
∂Y

∂v
∂Z

∂w
∂X

∂w
∂Y

∂w
∂Z

⎤
⎦ =

[(
N p)T �m [

ũ ṽ w̃
]]T

, (62)
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and the Green-Lagrange strain tensor can be calculated as

�Ê = A1
(
N p)T �m�ũ + A2

(
N p)T �m�ṽ

+ A3
(
N p)T �m�w̃

=
[
A1

(
N p)T �m A2

(
N p)T �m A3

(
N p)T �m

]
�Ũ

= ANT
p�m�Ũ, (63)

where

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

F11 0 0
0 F12 0
0 0 F13
F12 F11 0
0 F13 F12
F13 0 F11

⎤
⎥⎥⎥⎥⎥⎥⎦

, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

F21 0 0
0 F22 0
0 0 F23
F22 F21 0
0 F23 F22
F23 0 F21

⎤
⎥⎥⎥⎥⎥⎥⎦

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

F31 0 0
0 F32 0
0 0 F33
F32 F31 0
0 F33 F32
F33 0 F31

⎤
⎥⎥⎥⎥⎥⎥⎦

, (64)

A = [
A1 A2 A3

]
, (65)

NT
p =

⎡
⎣(N p)T

(N p)T

(N p)T

⎤
⎦ ,�m =

⎡
⎣�m

�m

�m

⎤
⎦ ,

(66)

and

�Ũ = [
�ũ �ṽ �w̃

]T
. (67)

For the last term in Eq. (58), we can define vector θ as

θ = [
∂u
∂X

∂u
∂Y

∂u
∂Z

∂v
∂X

∂v
∂Y

∂v
∂Z

∂w
∂X

∂w
∂Y

∂w
∂Z

]T
, (68)

and the term δθ can be calculated as

�θ = NT
p · �m · �Ũ . (69)

5.3 Element stiffness matrix and internal force

Based on the definition of θ given in Eq. (68), the last term
in Eq. (58) can be written as

S :
(
δDT · �D

)
= δθT · I · �θ

= δŨ
T ·

(
�T

m · N p

)
· I

·
(
NT

p · �m

)
· �Ũ, (70)

where

I =
⎡
⎣S

S
S

⎤
⎦ . (71)

Substituting Eq. (70) into Eq. (58), the linearized variation
of energy can be written as

δW =
∫
V0

δ Ê
T · D̂ · �ÊdV0 +

∫
V0

δθT · I · �θdV0. (72)

Consider Eqs. (63) and (69), we have

δW = δŨ
T ·

∫
V0

(
�T

m · N p · AT
)

· D̂ ·
(
A · NT

p · �m

)
dV0 · �Ũ

+ δŨ
T ·

∫
V0

(
�T

m · N p

)
· I ·

(
NT

p · �m

)
dV0 · �Ũ .

(73)

Then the element tangent stiffness matrix can be obtained by

K t
K2 = K t1

K2 + K tσ
K2, (74)

where

K t1
K2 = �T

m ·
∫
V0

N p · AT · D̂ · A · NT
pdV0 · �m, (75)

K tσ
K2 = �T

m ·
∫
V0

N p · I · NT
pdV0 · �m . (76)

The �m matrix is calculated and stored before the itera-
tion. In addition, in each nonlinear iteration step, the integral
term in the tangent stiffness matrix needs to be calculated
based on the current stress state. Similar to before, the integral
can be calculated by dividing the polyhedron into tetrahe-
drons and adopting a Gauss quadrature rule. The internal
force is obtained from Eq. (10) as

Fint = �T
m ·

∫
V0

N p · AT · ŜdV0. (77)

At each step, the second Piola–Kirchhoff stress Ŝ at each
interpolation point is calculated and the Cauchy stress σ can
be calculated as

σ = 1

J
F · S · FT . (78)
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Fig. 4 3D Cook’s membrane
problem, a Geometry and
boundary condition; b example
of a polyhedral swept mesh; c
example of a regular mesh

6 Numerical examples

6.1 3D Cook’s membrane problem

As a first example, we consider the standard Cook’s mem-
brane bending test with the geometric model illustrated in
Fig. 4. The relevant dimensions are L = 48, H1 = 44,
H2 = 16, B = 10. The left side of the tapered beam is
fixed and the right side is applied a constant distributed verti-
cal load qy . The material parameters are selected as λ = 100
and μ = 40. The distributed vertical load is given as qy = 4.

For SFVEM, it is necessary to ensure that the order of
the basis function of the strain mode meets the requirements
(the rank of the resulting stiffness matrix is correct). Using
an eigenvalue analysis of different polyhedral elements, see
[45], a relationship between the number of vertices and the
polynomial order l was obtained. Furthermore, we note that
while an individual element is rank deficient, the rank of
the global stiffness matrix can be correct. In such cases, a
low-order polynomial (l = 1) can be used to avoid the high
computational cost caused by the domain integration. The
results obtained from polynomials of different orders will be
compared in this example.

To compare the performance of SFVEM for 3D hypere-
lastic problems, the first-order finite element method (Q1) is
selected. The convergence is studied here by adopting vari-
ous meshes using uniform refinement. Four different meshes
defined by the parameter N which corresponds to the number
of divisions 2N×2N in L×H are selected.As shown inFig. 4,
two different types of meshes including a polyhedral swept
mesh and a hexahedral swept mesh are used in this example.
For different meshes, the maximum vertical displacement uy

for different divisions 2N are solved by differentmethods and
compared in Table 1.

Table 1 illustrates that the results calculated by SFVEM
for regular meshes are very close to those obtained by FEM.
The results depict the same convergence characteristic as
SFVEM. Polyhedral meshes do not change this behavior.
The order of the polynomial l = 1 yields already accurate

Table 1 Maximum vertical displacement uy for different element divi-
sion N for polyhedral and regular meshes

N FEM(regular) SFVEM(regular) SFVEM(polyhedral)

Q1 l = 1 l = 2 l = 1 l = 2

2 8.6285 8.6378 8.5233 9.1293 8.7152

3 10.3516 10.3530 10.3398 10.1310 9.9228

4 11.0071 11.0073 11.0064 10.9434 10.9002

5 11.2099 11.2099 11.2098 11.1964 11.1846

Fig. 5 Maximum value of vertical displacement uy for different ele-
ment division 2N

results. Higher-order polynomials are less efficient for the
same accuracy. The convergence curves obtained by differ-
ent methods and different parameters are shown in Fig. 5.
Besides, for l = 1 and N = 4, the contour plots of displace-
ments uy and stresses Syx are given in Figs. 6 and 7.

6.2 Punch problem

In this example, a punch problem is selected which is
subjected to high compression loading. The geometry and
relevant dimensions are given in Fig. 8 as L1 = L2 = 2,
H = 1. A surface load P = 300 is applied on one-quarter of

123



Computational Mechanics

Fig. 6 Contour plots of
displacement uy obtained by
SFVEM for different meshes,
l = 1, N = 4

Fig. 7 Contour plots of stresses
Sxy obtained by SFVEM for
different meshes, l = 1, N = 4

the block and other boundary conditions are given in Fig. 8.
The Neo-Hookean material model is used with the Lame
constants λ = 400.75 and μ = 92.5.

Similar to the first example, a numerical convergence
study is presented for different meshes. The vertical dis-
placement uz of point A (as shown in Fig. 8) is reported for
mesh refinement parameter N corresponding to a mesh of
N ·2N ·2N for regular and polyhedral meshes. For the regu-
lar meshes, the order of the strain mode is selected as l = 1.
For the polyhedral meshes, the order of the strain mode is
selected as l = 1 and l = 2. The first-order finite element
method (FEM, Q1) is selected for comparison.

The values of the vertical displacements uz of point A are
calculated and given in Table 2 for regular meshes and poly-
hedral meshes. For the regular hexahedral mesh, the results
obtained by SFVEM are very close to those obtained by
FEM, even for coarse meshes. For polyhedral meshes, for

Fig. 8 Punch problem and boundary boundary conditions
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Table 2 Maximum vertical
displacement uz for different
element division N for
polyhedral and regular meshes

N FEM SFVEM(regular) SFVEM(poly, l = 1) SFVEM(poly, l = 2)

4 −0.6555 −0.6591 −0.6159 −0.6479

6 −0.6449 −0.6455 −0.6432 −0.6434

8 −0.6403 −0.6405 −0.6383 −0.6385

10 −0.6381 −0.6382 −0.6370 −0.6372

16 −0.6358 −0.6358 −0.6354 −0.6356

Fig. 9 Minimum value (corner A) of vertical displacement uz for dif-
ferent element division N

strain modes of different orders l, the displacement results
obtained are different only in the case of the coarsest mesh
(N = 4). The reason for this difference may be that the mesh

size is too large. For other meshes, the displacement results
obtained by different orders l are basically the same.

The convergence of the displacement uz of point A is
demonstrated in Fig. 9. For the current material and load
boundary conditions, we used a quadratic (Q2) element to
calculate a reference solution, which led to urefz = −0.6344
and is illustrated in Fig. 9. It can be seen from the figure that
although the results obtained by the hexahedral mesh are in
better agreement with the finite element, the results obtained
by the polyhedral mesh are closer to the reference solution.

Finally, for N = 10, the contour plots of displacement
uz and stress σzz obtained by SFVEM on hexahedral mesh
(l = 1) and polyhedral mesh (l = 2) are depicted in Fig. 10.

6.3 Twisting of a column

In this example, the twisting of a column is used to evaluate
the performance of the proposed method under extremely
large deformations. The geometry of the problem and the
virtual element meshes (including hexahedral meshes and

Fig. 10 Contour plots of displacements and stresses obtained by SFVEM with different meshes, a, b displacements uz ; c, d stresses szz

123



Computational Mechanics

Fig. 11 Twisting column: geometry, hexahedral mesh and polyhedral
mesh used for the analysis

polyhedral meshes) are given in Fig. 11. The bottom nodes
are fixed and the top nodes rotate around the Z -axis as:

⎡
⎣x
y
z

⎤
⎦ =

⎡
⎣cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣X
Y
Z

⎤
⎦ , (79)

where (X ,Y , Z) represents the initial configuration, (x, y, z)
is the deformed configuration. Besides, θ represents the angle
of rotation for the top surface around the Z -axis.

The material model for this example is assumed as Neo-
Hookean hyperelastic with the Lame parameters λ = 100
and μ = 40. The angle of rotation of the top surface is given

as θ = π . The order of the polynomial is selected as l = 1
to save computing time. For different meshes, the deformed
shapes and contour plots of displacement uy are provided in
Fig. 12. Again, the regular and polyhedral meshes lead to the
same responses.

6.4 Force deformation of round arch

The last example is an arch subjected to a concentrated
load. The geometric model and polyhedral mesh are given in
Fig. 13. The outer radius of the arch is 100, the inner radius is
95, and the thickness is 10. As shown in Fig. 13, two differ-
ent boundary conditions are applied. For boundary condition
1, the left side of the model is fixed. For boundary condi-
tion 2, the left side of the model is hinged. For two different
boundary conditions, the bottom right end of the model is
fixed. Nodal forces are applied to the top of the model. The
material parameters are assumed as E = 5 and ν = 0.35.

This type of structure is geometrically unstable and needs
the path-following or arc-length solution method. The basic
idea of the arc-length method is to add a constraint condition
to the set of nonlinear equations, which is associated with the
total load factor λ. Since the method proposed in this work
does not require stabilization, the techniques employed in
the nonlinear finite element method can be directly used. For
details, see related books on nonlinear finite elementsmethod
[46].

For thefirst type of boundary condition, the initial load fac-
tor λ is selected as λ = 0.2. For the second type of boundary
condition, the initial load factor λ is selected as λ = 0.02.
The evolution of displacement uy of point A (as shown in
Fig. 13) with respect to the load factor is plotted in Fig. 14
and Fig. 15 for different boundary conditions, respectively.

Fig. 12 Contour plots of displacements uy obtained by SFVEM with different meshes, a–c hexahedral mesh; d–f polyhedral mesh
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Fig. 13 Three-dimensional arch
geometry and mesh. This
problem considers two different
boundary conditions: boundary
condition 1: the left side of the
model is fixed, boundary
condition 2: the left side of the
model is hinged

Fig. 14 Load displacement curve of the round arch with boundary 1

The load-deflection curves obtained with the SFVEM
match very well with the solutions obtained by FEM with
similar meshes. For the second type of boundary condition,
Fig. 15 shows the complex nonlinear behavior (snap-back) of
this simple structure. The contour plots obtained under dif-
ferent displacements and different boundary conditions are
provided in Fig. 16.

7 Conclusion

This paper introduces a stabilization-free virtual element
method for 3D hyperelastic problems. As an extension to
the two-dimensional problem, afirst-order three-dimensional
virtual elementmethodwithout any stabilization is presented.
This paper discusses in detail the specific calculation pro-
cess of the traditional first-orderH1 projection operator and

Fig. 15 Load displacement curve of the round arch with boundary 2

the high-order L2 projection operator for three-dimensional
polyhedral elements. The L2 projection operators are com-
puted relying on the components of the gradient, and the
matrix for strain approximation is directly constructed. As
no stability terms are required in SFVEM, hyperelastic prob-
lems can be directly solved within the framework following
the finite element method. Benchmark examples are used to
demonstrate the accuracy of the 3D SFVEM for hyperelas-
tic problems. In addition, this paper also uses the arc-length
method to track the complete structural deformation of unsta-
ble structures. It can be seen from the numerical examples
that when using a hexahedral mesh, the results obtained are
similar to FEM. At the same time, SFVEM yields more
accurate results for polyhedral meshes. Since no stabiliza-
tion term is required, the method can be applied to complex
multiphysics problems, such as large-strain incompressible
electromechanics or electromechanical growth problems in
the future.

123



Computational Mechanics

Fig. 16 Contour plots of displacement uy at different times
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